
Computers & Geosciences 134 (2020) 104342

Available online 4 November 2019
0098-3004/© 2019 Elsevier Ltd. All rights reserved.

A half-plane time-domain BEM for SH-wave scattering by a 
subsurface inclusion 

Mehdi Panji *, Saeed Mojtabazadeh-Hasanlouei, Farshid Yasemi 
Department of Civil Engineering, Zanjan Branch, Islamic Azad University, Zanjan, 58145-45156, Iran   

A R T I C L E  I N F O   

Keywords: 
Half-plane BEM 
Synthetic seismogram 
Subsurface inclusion 
SH-wave 
Time-domain 

A B S T R A C T   

A direct time-domain numerical approach named the half-plane boundary element method is proposed based on 
the half-space Green’s functions for seismic analysis of a homogeneous linear elastic half-plane in presence of 
arbitrarily shaped subsurface inclusions, subjected to propagating obliquely incident SH-waves. It is assumed 
that inclusion is completely connected to the surrounding domain. In the use of the method, only the interfaces 
need to be discretized to create the model. First, the problem is decomposed into two parts including a pitted 
half-plane and a closed filled solid. Then, the influence coefficients of the matrices are obtained by applying the 
method to each part. By satisfying the boundary/continuity conditions on the interfaces, a coupled equation is 
finally formed to determine unknown boundary values in each time-step. After implementing the method in an 
advanced developed algorithm, its efficiency is investigated by solving some practical examples and compared 
with those of the published works. The results show that the proposed method has an appropriate accuracy for 
analyzing seismic inclusion problems. To complete the results, the synthetic seismograms of the surface are 
presented for circular/elliptical subsurface inclusions. Then, three-dimensional amplification patterns are illus-
trated for some specific cases. The method can be recommended to geotechnical/mechanical engineers for 
transient analysis of different topographic features, seismic isolation and composite materials.   

1. Introduction 

Study on the effects of subsurface topographic features such as cav-
ities and inclusions shows the significant role of local conditions on the 
motions of ground surface due to seismic waves. Thus, the site effects 
engendered by existence of subsurface irregularities can lead to 
amplifications/de-amplifications of seismic waves in different parts of 
the surface (Davis and West, 1973; S�anchez-Sesma, 1987). Therefore, 
one of the most important issues is to recognize seismic ground motions 
and damage investigations during an earthquake and in presence of 
subsurface topographic features (Aki, 1988). 

In underground non-homogeneities such as inclusions, different 
impedances of materials compared to the surrounding domain makes 
them for having a particular significance among the other subsurface 
topographic features (Aki, 1993). Thus, modeling of such features using 
an appropriate approach can present a better attitude for the detection 
of their seismic behavior (Dravinski, 1983). Technically speaking, there 
are four proposed approaches for the seismic analysis of the ground 
surface, which can be divided into analytical, semi-analytical, 

experimental and numerical methods. Each of the mentioned ap-
proaches has certain advantages and disadvantages to others 
(S�anchez-Sesma et al., 2002). Among the recent mathematical-based 
analytical studies can pointed out to the research of Zhang et al. 
(2019) where presented the site amplification effects of a radially 
multi-layered semi-cylindrical canyon on seismic response of an earth 
and rockfill dam utilizing the wave function expansion method. Due to 
the lack of flexibility of analytical approaches in modeling and analysis 
of complex topographical features which are visible in nature, the use of 
numerical methods is inevitable. Although the existence of approxima-
tion cannot be neglected in the results of numerical methods which is 
because of discretizing processes, realistic problems with complex ge-
ometries can be modeled utilizing these approaches (Manoogian and 
Lee, 1996). In fact, in the numerical methods, never can claim that the 
responses are completely accurate, but the main goal is a convergence 
towards the exact answers. By dividing the common numerical methods 
into two general categories, the domain methods and boundary methods 
can be pointed out. Main domain methods include the finite element 
method (FEM) and finite difference method (FDM). In the domain 
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methods, the medium of the problem should be closed and the whole the 
medium should be discretized. Also, the energy absorber should be 
defined in the corners of the model. Lysmer and Drake (1972), Smith 

(1975) and Kawase and Sato (1992) were the pioneering researchers 
who highlighted the application of FEM for seismology and analysis of 
body wave propagation problems, respectively. The studies of Boore 

Fig. 1. The problem geometry of an arbitrarily shaped subsurface inclusion placed in an elastic half-plane subjected to the incident SH-waves.  

Fig. 2. The flowchart of the DASBEM program for seismic analysis of subsurface inclusion.  
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(1972), Ohtsuki and Harumi (1983) and Moczo and Bard (1993) are the 
basic studies using FDM that presented the effects of inhomogeneities 
subjected to seismic SH- and SV-waves and investigated wave diffrac-
tion, amplification and differential motion near strong lateral disconti-
nuities, respectively. 

By considering the boundary element method (BEM), one dimension 
of the models will be reduced and the radiation conditions of waves at 
infinity will be satisfied. Although BEM approaches include some con-
straints such as complex formulation and less development in nonlinear, 
plastic and multiphase media, their use can result in the automatic 
satisfaction of wave radiation conditions in far boundaries, concentra-
tion of meshes only around the boundary of desired topographic 

features, lower volume of input data, significant reduction in analysis 
time and extremely high accuracy of exported results due to the large 
contribution of analytical processes in solving problems (Panji et al., 
2013). BEM is divided into two categories including full-plane and 
half-plane, each being developed in frequency and time-domain. When 
the full-plane BEM is used, truncating the model from a full-space and 
discretizing it in a distance far away from the desired zone is inevitable. 
This leads to satisfaction of stress-free conditions on the ground surface 
in an approximate process (Ahmad and Banerjee, 1988). Panji et al. 
(2011) and Panji et al. (2016) used the static full-plane BEM in their 
studies to evaluate effective parameters on the stability of underground 
and shallow tunnels subjected to eccentric loads, respectively. Utilizing 

Fig. 3. The normalized displacement amplitude of the ground surface versus x=b for the model of a circular inclusion with the radius of b and DR ¼ 1.5b subjected to 
the SH-waves. The incident angle of θ ¼ 0� for the dimensionless frequencies of (a) η ¼ 0:5., (b) η ¼ 1:0, (c) η ¼ 1:5 and (d) η ¼ 2. 

Fig. 4. The normalized displacement amplitude of the ground surface versus x=b for the model of a circular inclusion with the radius of b and DR ¼ 1.5b subjected to 
the SH-waves with the dimensionless frequency of η ¼ 1:0 and incident angles (θ) of (a) 0� , (b) 90� . 
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the dynamic full-plane BEM, Parvanova et al. (2014) and Parvanova 
et al. (2015) investigated the dynamic responses of a medium with 
multiple inclusions under anti-plane strain conditions and wave scat-
tering by nano-heterogeneities embedded in an elastic matrix, respec-
tively. In the half-plane BEM approach, the implementation of the 
formulation will be more difficult compared to the full-plane BEM. This 
is because of the satisfaction of stress-free boundary conditions of the 
ground surface in the formulations. Despite creating bulky equations in 
the half-plane BEM, there is no need to discretize the smooth surface and 
define fictitious elements for enclosing boundaries which will help to 
make the models simpler. Like the previously mentioned approach, the 
half-plane BEM has been also used for static (Panji and Ansari, 2017a) 
and dynamic (Dong et al., 2004) analysis of subsurface topographic 
features as well as underground cavities, pipes and inclusions. 

Among the pioneering studies using time-domain BEM are the re-
searches of Rice and Sadd, (1984) who exhibited the propagation of 
SH-waves in semi-infinite domains and Belytschko and Chang (1988) 
who presented a simplified direct time integration boundary element 
method. Subsequently, Takemiya and Fujiwara (1994) illustrated the 
scattering and propagation of SH-waves at irregular sites. Then, Feng 
et al. (2003), Huang et al. (2005) and Mykhaskiv (2005) focused their 
studies on 2D transient scattering of SH-waves from an inclusion with a 
unilateral frictional interface. In the study of Kamalian et al. (2003), the 
topic of site response analysis of topographic structures by a 2D 
time-domain BEM was presented. Moreover, the 2D time-domain site 
response of nonhomogeneous topographic structures was discovered by 
Kamalian et al. (2006) using a hybrid FE/BE method. In the following 
years, the transient analysis of wave propagation problems by the 
half-plane BEM was carried out by Panji et al. (2013), Panji et al. (2014a, 
b). Moreover, Ba and Yin (2016) discovered the wave scattering of the 
complex local site of layered half-space subjected to incident plane 
SH-waves using a multi-domain IBEM. Then, transient SH-wave scat-
tering by the lined tunnel embedded in an elastic half-plane was pre-
sented by Panji and Ansari (2017b). In another study, Panji and 
Mojtabazadeh-Hasanlouei (2018) illustrated the time-domain re-
sponses of the surface subjected to incident SH-waves in presence of 
regularly distributed enormous embedded cavities. Moreover, using the 
indirect boundary integral equation method, Liang et al. (2019) studied 
the broadband scattering of plane P, SV and Rayleigh-waves by a hill 
topography. Utilizing the same approach, Huang et al. (2019) presented 
the scattering of plane P and SV-waves by twin lining tunnels with 
imperfect interfaces embedded in an elastic half-space. Recently, Panji 
and Mojtabazadeh-Hasanlouei (2020) focused their research on the 
transient response of irregular surface by periodically distributed 
semi-sine shaped valleys subjected to SH-waves. 

As the literature review shows, the scattering of transient SH-waves 
on the ground surface in the presence of sub-surface inclusion has not 
yet been directly analyzed in the time-domain. In previous researches, 
the models were limited to the homogeneous single-material subsurface 
problems. Although in some researches including Lubich (1988), Gar-
cia-Sanchez and Zhang (2007) and Manolis et al. (2017), the mathe-
matical formulation, numerical implementation and transient analysis 
of two-dimensional non-homogeneous solids were presented as well, 
they were established to obtain the time-domain responses by the in-
verse Fourier/Laplace-transform algorithm from mechanical problems 
point of view. But, in this study step-by-step transient analysis of arbi-
trarily shaped subsurface inclusions are presented subjected to propa-
gating obliquely incident plane SH-waves using the direct half-plane 
time-domain BEM approach. In the present paper, the models are 
developed to heterogeneous state and made up of two separate parts 
including a pitted half-plane and the medium of alluvium that are 
assembled on each other. By implementing the proposed method in the 
general DASBEM algorithm (Panji et al., 2013), its validity was evalu-
ated by analyzing several practical examples. To complete numerical 
results, some synthetic seismograms and three-dimensional (3D) 
amplification patterns were also presented to show the surface response 

Fig. 5. The normalized displacement amplitude of the ground surface versus x=
b for the model of a circular inclusion with the radius of b and different DR 
values subjected to the SH-waves with the incident angle of θ ¼ 0� for the 
dimensionless frequency of η ¼ 0:5. 

Fig. 6. The normalized displacement amplitude of the ground surface versus x=
b for the model of a circular inclusion with the radius of b and different DR 
values subjected to the SH-waves with the incident angle of θ ¼ 90� for the 
dimensionless frequency of η ¼ 0:5. 

Fig. 7. The normalized displacement amplitude of the ground surface versus x=
b for the model of a circular inclusion with the radius of b and subjected to the 
SH-waves with the incident angle of θ ¼ 0� for the dimensionless frequency 
of η ¼ 0:5. 
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in the presence of circular/elliptical inclusions. In fact, the main pur-
poses of the present paper are to prepare simple seismic heterogeneous 
models with different behavior of materials, obtain high accuracy re-
sponses, achieve low analysis time and input data and combine nu-
merical approaches in a simple way. 

2. Problem statement 

As illustrated in Fig. 1, a linear elastic homogeneous and isotropic 
half-plane is considered as the medium of the models and an arbitrarily 
shaped subsurface inclusion is located in this medium. As depicted in 
this figure, Γ is the boundary of the body which is defined separately for 
the pitted area and the closed solid which will fill the inclusion medium. 
DR is the depth ratio of inclusion and b is the radius of inclusion. 
Moreover, Ω is the domain and subscripts of 1 and 2 related to the 
medium and inclusion, respectively. Moreover, θ is the angle of the 
incident waves and the parameter n is the normal vector that is 
perpendicular to the surface and dependent to the node numbering di-
rection. The models are subjected to the incident out-of-plane SH-waves 
of the Ricker type (Panji et al., 2013). The function of a Ricker wavelet 
type is defined as Eq. (1) (Ricker, 1953): 

f ðtÞ¼
�
1 � 2

�
πfpðt � t0Þ

�2�e� ðπfpðt� t0ÞÞ
2

; (1)  

In Eq. (1), fp is the predominant frequency of the wave and t0 is the time 
shifting parameter. Since the modeling is completely conducted in half- 

plane and the stress-free boundary conditions of the ground surface are 
satisfied, free-field displacement (uff ) can be obtained by adding the 
phase of the incident and reflected waves as follows (Reinoso et al., 
1993): 
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(2)  

where αinc:, αref :, rinc: and rref : can be achievable from the following 
equations: 

αinc: ¼ cðt � t0Þ þ rinc: ; rinc: ¼ � sinðθÞ⋅x þ cosðθÞ⋅y ;
αref : ¼ cðt � t0Þ þ rref : ; rref : ¼ � sinðθÞ⋅x � cosðθÞ⋅y ; (3) 

On the other hand, the equation of motion for the anti-plane strain 
model is as follows: 

∂2uðx; y; tÞ
∂x2 þ

∂2uðx; y; tÞ
∂y2 þ bðx; y; tÞ¼

1
c2

∂2uðx; y; tÞ
∂t2 ; (4)  

In Eq. (4), u(x, y, t) and b(x, y, t) are out-of-plane displacement and body 
force at the point (x, y) and current time t, respectively. Moreover, c is 
the shear-wave velocity determined by 

ffiffiffiffiffiffiffiffi
μ=ρ

p
, where μ is the shear 

Fig. 8. The normalized displacement amplitude of the ground surface versus x=b for the model of a circular inclusion with the radius of b and subjected to the SH- 
waves with the incident angle of θ ¼ 90� for the dimensionless frequency of.ðaÞ η ¼ 0:5;  ðbÞ η ¼ 1:0:

Fig. 9. The normalized displacement amplitude of the ground surface versus x=b for the model of a circular inclusion with the radius of b and different DR values 
subjected to the SH-waves with the incident angle of θ ¼ 30� for the dimensionless frequency of η ¼ 1:0. 

M. Panji et al.                                                                                                                                                                                                                                   



Computers and Geosciences 134 (2020) 104342

6

modulus and ρ is the mass density. To obtain a 2D anti-plane semi- 
infinite medium, Eq. (4) should be solved by the following boundary 
condition: 

∂uðx; y; tÞ
∂n

�
�
�
�
y¼0
¼ 0 ; (5) 

By simultaneously taking the singular solution into account for Eqs. 
(4) and (5), the half-space Green’s functions can be achievable (Panji 

et al., 2013). 

3. Time-domain half-plane boundary element method (BEM) 

By utilizing the wave source image technique (Panji et al., 2013) and 
satisfying the boundary conditions related to the ground surface, one 
can exclusively concentrate meshes around the boundary of inclusion. 
The details of this method are mentioned in the following section. 

Fig. 10. Synthetic seismograms of the ground surface and the procedure of the SH-waves dispersion with time, for the model of a circular inclusion with I ¼ 0.1, 
DR ¼ 1.5b and incident angle of (a) θ ¼ 0� , (b) θ ¼ 30� , (c) θ ¼ 60� and (d) θ ¼ 90� . 

Fig. 11. Synthetic seismograms of the ground surface and the procedure of the SH-waves dispersion with time, for the model of a circular inclusion with I ¼ 0.3, 
DR ¼ 1.5b and incident angle of (a) θ ¼ 0� , (b) θ ¼ 30� , (c) θ ¼ 60� and (d) θ ¼ 90� . 
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3.1. Boundary integral equation (BIE) 

At the first step, without considering any boundary condition of Eq. 
(5), the weighted residual integral is applied on Eq. (4). Then, by car-
rying out twice integration, eliminating the volumetric integral defined 
on the domain using boundary methods and ignoring the contributions 
of the initial conditions and body forces, the direct boundary integral 
equation (BIE) in the time-domain can be obtained as Eq. (6) (Brebbia 

and Dominguez, 1989; Dominguez, 1993; Reinoso et al., 1993): 

cðξÞuðξ; tÞ¼
Z

Γ

�Z t

0
½u*ðx; t; ξ; τÞ ⋅ qðx; tÞ � q*ðx; t; ξ; τÞ⋅uðx; tÞ�dτ

�

dΓðxÞ ;

(6)  

In Eq. (6), u* and q* are the half-space displacement and traction Green’s 
functions of the time-domain, respectively (Panji et al., 2013). 

Fig. 12. Synthetic seismograms of the ground surface and the procedure of the SH-waves dispersion with time, for the model of a circular inclusion with I ¼ 0.5, 
DR ¼ 1.5b and incident angle of (a) θ ¼ 0� , (b) θ ¼ 30� , (c) θ ¼ 60� and (d) θ ¼ 90� . 

Fig. 13. Synthetic seismograms of the ground surface and the procedure of the SH-waves dispersion with time, for the model of an elliptical inclusion with I ¼ 0.1, 
DR ¼ 1.5b and incident angle of (a) θ ¼ 0� , (b) θ ¼ 30� , (c) θ ¼ 60� and (d) θ ¼ 90� . 
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Moreover, u and q are the displacements and traction fields on the 
boundary, respectively, Γ denotes the boundary, and x and ξ are the 
coordinates of source and receiver, respectively. Additionally, u*⋅ q and 
q*⋅u are the Riemann-convolution integrals and cðξÞ is the angle of 
boundary refraction which is defined as the geometry coefficient 
(Dominguez, 1993). The BIE (6) can be modified to BIE (7) for the total 

displacement by insertion of the free-field displacement on the ground 
surface in the half-plane without presence of any irregularities (Kawase, 
1988; Hadley et al., 1989). 

Fig. 14. Synthetic seismograms of the ground surface and the procedure of the SH-waves dispersion with time, for the model of an elliptical inclusion with I ¼ 0.3, 
DR ¼ 1.5b and incident angle of (a) θ ¼ 0� , (b) θ ¼ 30� , (c) θ ¼ 60� and (d) θ ¼ 90� . 

Fig. 15. Synthetic seismograms of the ground surface and the procedure of the SH-waves dispersion with time, for the model of an elliptical inclusion with I ¼ 0.5, 
DR ¼ 1.5b and incident angle of (a) θ ¼ 0� , (b) θ ¼ 30� , (c) θ ¼ 60� and (d) θ ¼ 90� . 
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cðξÞuðξ; tÞ¼
Z

Γ

�Z t

0
½u*ðx; t; ξ; τÞ ⋅ qðx; tÞ � q*ðx; t; ξ; τÞ ⋅ uðx; tÞ�dτ

�

dΓðxÞ

þ uff ðξ; tÞ ;
(7)  

where uff is the free-field displacement on ground surface without 
presence of any irregularities. By solving Eq. (7), total displacement due 
to presence of inclusion can be obtained. In this step, it is possible to 
obtain displacements at any point m in Ω, including the ground surface 
(y ¼ 0). The following modified equation can be used for internal points. 
In this step, cmðξÞ should be equal to 1.0. 

umðξ; tÞ ¼
Z

Γ

�Z t

0
½u*mðx; t; ξ; τÞ ⋅ qðx; tÞ

� q*mðx; t; ξ; τÞ⋅uðx; tÞ�dτ
�

dΓðxÞþ uff :mðξ; tÞ ; (8)  

in which, the half-space displacement and traction Green’s functions for 
each internal point are shown by u*m and q*m , respectively. Moreover, 
the free-field displacements are shown by uff :m that should be recalcu-
lated in this step. 

4. Numerical implementation 

In this step, the time-axis should be considered and the geometric 
boundary of the body should be discretized before solving Eq. (7) and 
obtaining field variables. In fact, the mentioned equation is an exact 
solution until reaching this step and there is no approximation in this 
equation before applying discretization on the boundaries of the pitted 
area and closed filled solid. To carry out temporal integration, an 
analytical process followed by a numerical procedure should be per-
formed to achieve spatial integration. 

4.1. Temporal integration 

By considering Δt, the time interval will be divided into N equal in-
crements from 0 to t, where t ¼ NΔt and field variables can be assumed 
to remain linear within each time-step. By preparing temporal in-
tegrations, the time-convoluted BIE can be rewritten as Eq. (9): 

cðξÞuNðξÞ¼
XN

n¼1

Z

Γ

� �
UN� nþ1

1 ðx; ξÞqnðxÞþUN� n
2 ðx; ξÞqnðxÞ

�

�
�
QN� nþ1

1 ðx; ξÞunðxÞþQN� n
2 ðx; ξÞunðxÞ

��
dΓðxÞþ uff :NðξÞ ; (9)  

in which, UN� nþ1
1 and UN� n

2 are the half-plane displacement time- 
convoluted kernels and QN� nþ1

1 and QN� n
2 are the half-plane traction 

Fig. 16. The 3D amplification of the ground surface versus different dimensionless frequencies for the model of a circular inclusion subjected to the SH-waves with 
I ¼ 0.3, DR ¼ 1.5b and the incident angle of (a) θ ¼ 0� , (b) θ ¼ 30� , (c) θ ¼ 60� , and (d) θ ¼ 90� . 
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time-convoluted kernels. These kernels correspond to the forward and 
backward time-nodes within a time-step, which are shortened in the 
closed-form. The boundary displacement and free-field displacement are 
shown as uN and uff :N; respectively, at the time t ¼ NΔt. The full form of 
the time-convoluted kernels of anti-plane elastodynamics for half-plane 
displacement and traction is presented in Panji et al. (2013). 

4.2. Spatial integration 

The isoparametric quadratic elements are used to discretize the 
boundary of the domain for performing the spatial integration in nu-
merical form, and all the related quantities to the geometry and field 
variables are given in terms of nodal variables. 

xiðκÞ¼NaðκÞxia ; (10)  

f ðxðκÞÞ¼NaðκÞfa ; (11) 

In these equations, f is the displacement and traction and NaðκÞ is the 
quadratic shape functions, in which κ is the local intrinsic coordinates of 
the elements. By considering the spatial discretization, Eq. (9) can be 
rewritten as Eq. (12): 

cðξÞuNðξÞ¼
XN

n¼1

XM

m¼1

2

4
Z

Γm

�
UN� nþ1

1 ðxðκÞ;ξÞþUN� n
2 ðxðκÞ;ξÞ

�
NαðκÞ jJjdκ qn

α

�

Z

Γm

�
QN� nþ1

1 ðxðκÞ;ξÞþQN� n
2 ðxðκÞ;ξÞ

�
NαðκÞ jJj dκ un

α

3

5þuff :NðξÞ ;

(12)  

where UN� nþ1
1 þ UN� n

2 and QN� nþ1
1 þ QN� n

2 are the closed form of scalar 
half-plane displacement and traction kernels, respectively (Panji et al., 
2013). uff :N and uN are depicted the free-field motion and displacement 
field in time step N, respectively. Moreover, un and qn are displacement 
and traction vectors, respectively. In Eq. (12), the total number of 
boundary elements of inclusion is presented by M. The portion of 
boundary to the element ‘m’ is indicated by Γm and J is the Jacobian of 
transformation. To calculate J, Eq. (13) can be used: 

Ji¼
∂NαðκÞ

∂κ
xiα ; (13)  

4.3. Time-stepping algorithm 

By discretizing the geometry boundary of the problem using three- 

Fig. 17. The 3D amplification of the ground surface versus different dimensionless frequencies for the model of a circular inclusion subjected to the SH-waves with 
I ¼ 0.5, DR ¼ 1.5b and the incident angle of (a) θ ¼ 0� , (b) θ ¼ 30� , (c) θ ¼ 60� , and (d) θ ¼ 90� . 
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node quadratic elements and forming the spatial integration of Eq. (12) 
for all BEs, the following matrix equation can be derived: 

XN

n¼1
HN� nþ1fung¼

XN

n¼1
GN� nþ1fqng þ

�
uff :N� ; (14) 

By integration over the boundary elements, the elements of the 
HN� nþ1 and GN� nþ1 matrices can be obtained. The vectors of boundary 
nodal quantities at the time-step n are shown by fung and fqng. When the 
tractions on the boundary of inclusion are absent, the term GN� nþ1fqng

should be considered equal to zero. 
�
A1

1

��
XN�¼

�
B1

1

��
YN�þ

�
RN�þ

�
uff :N� ; (15)  

in which: 

�
RN
o
¼
XN� 1

n¼1

�
GN� nþ1fqng � HN� nþ1fung

�
; (16) 

In Eq. (15), fXNg and fYNg are the vectors including unknown and 
known variables, respectively, and fRNg includes the effects of past 
dynamic-history on the current time-node N. By solving Eq. (15), all 
boundary unknowns at each time-step can be calculated and displace-
ments at the internal point “m” placed into the domain can be obtained. 

5. Modeling 

According to the sub-structuring process, the subsurface inclusion 
should be divided into two parts including a pitted half-plane as the first 
part and a closed filled solid as the second part. The details of modeling 
are presented in the following sections. 

5.1. The first part: the pitted half-plane 

This part includes half-plane media with a cavity subjected to the 
seismic SH-waves. If the interface nodes of the cavity connected to the 
surrounding domain are identified by the subscript of 12, the discretized 
BIE for this part at the time step N can be written as follows: 

H1
12uN

12¼ G1
12 qN

12 þ RN
12 þ uff :N

12 ; (17)  

and in this equation, RN
12 is the past dynamic time-history of interface 

for the first part and in the step N which is defined as follows: 

RN
12 ¼

XN� 1

n¼1

�
GN� nþ1

12 qn
12 � HN� nþ1

12 un
12

�
; (18) 

Moreover, uN
12 is the displacement, qN

12 is the traction fields of the 
interface Γ12 belonging to the first part and uff :N

12 is the free-field motion 
of interface nodes. 

Fig. 18. The 3D amplification of the ground surface versus different dimensionless frequencies for the model of an elliptical inclusion subjected to the SH-waves with 
I ¼ 0.3, DR ¼ 1.5b and the incident angle of (a) θ ¼ 0� , (b) θ ¼ 30� , (c) θ ¼ 60� , and (d) θ ¼ 90� . 
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5.2. The second part: a closed filled solid 

This part includes a closed solid medium as the material filling in-
clusion. The interface nodes of this domain are identified by the 
subscript of 21, and the discretized BIE at the time step N can be written 
as follows: 

H1
21 uN

21 ¼ G1
21  q

N
21 þ RN

21 ; (19)  

in which: 

RN
21 ¼

XN� 1

n¼1

�
GN� nþ1

21 qn
21 � HN� nþ1

21 un
21

�
; (20)  

where uN
21 and qN

21 are the displacement and traction fields of the 
interface Γ21 for the second part of the model, respectively. Moreover, 
RN

21 is the past dynamic time-history at the time step N for the interface 
of the second part. 

5.3. Assembling 

The equilibrium conditions of displacement and traction compati-
bility on the interface can be respectively presented as follows: 

uN
12¼ uN

21 ; (21)  

and 

μ1qN
12¼ � μ2qN

21 ; (22)  

where μ1 and μ2 are the shear modulus of the first and second parts of the 
model, respectively. Finally, by satisfying the mentioned conditions, the 
final matrix form of the assembled BIEs will be as follows: 
2

6
6
6
4

H1
12 � 1=μ1

G1
12

H1
21

1
=μ2

G1
21

3

7
7
7
7
5

8
<

:

uN
12

qN
12

9
=

;
¼

8
<

:

RN
12

RN
21

9
=

;
þ

8
<

:

uff :N
12

0

9
=

;
; (23) 

By solving Eq. (23), all unknown values on the interface, such as 
displacements and tractions, can be obtained. Then, to calculate the 
displacements of the ground surface, the equations of the first part can 
be used by assuming cðξÞ ¼ 1:0. 

6. The DASBEM flowchart 

Fig. 2 shows the flowchart of the DASBEM program and its details. 
This is a program for dynamic analysis of plane scalar time domain 
problems using half-plane boundary element method (BEM). The 
mentioned program is developed for analysis of 2D subsurface inclusions 
embedded in the elastic half-plane. In the following, the download link 

Fig. 19. The 3D amplification of the ground surface versus different dimensionless frequencies for the model of an elliptical inclusion subjected to the SH-waves with 
I ¼ 0.5, DR ¼ 1.5b and the incident angle of (a) θ ¼ 0� , (b) θ ¼ 30� , (c) θ ¼ 60� , and (d) θ ¼ 90� . 
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of this program is presented and the ‘How to use’ manual is provided as 
well (https://github.com/mehdipanji/DASBEM). 

7. Application examples 

After implementing the above formulation in an algorithm named 
DASBEM, several practical examples are solved to examine the validity, 
efficiency and accuracy of the obtained responses. The factor of NDA is 
the ratio of the Fourier amplitude of the total ground surface motion 
obtained by BEM for a defined frequency to the Fourier amplitude of the 
incident motion for the defined frequency. Moreover, the dimensionless 
frequency (η) is defined as (η ¼ ωb=πc) where ω is the angular frequency 
of the wave, b is the radius of inclusion and c is the shear-wave velocity. 
The impedance ratio (I) is the stiffness ratio of inclusion material to the 

surrounding medium and is explained as ðI ¼ ρ2c2=ρ1c1Þ, where ρ2 is the 
mass density, c2 is the shear-wave velocity of inclusion and ρ1 and c1 are 
the mass density and shear-wave velocity of the surrounding medium, 
respectively. The numerical procedure for the validation examples is 
implemented in MATLAB (2018). 

To study the behavior of a single underground inclusion located in an 
elastic half-plane subjected to the seismic SH-waves, some key param-
eters are considered in the models and their effects are clarified, sepa-
rately. As shown before in Fig. 1, DR is the depth ratio of inclusion, the 
value of 1.5b is considered in all the models and b is the radius of in-
clusion. The shape of inclusion is considered in circular and elliptical 
mode. Moreover, the incidence angles ðθÞ of 0� , 30� , 60� and 90� are 
applied and the impedance ratios (I) of 0.1, 0.3 and 0.5 are considered in 
the models, respectively. Moreover, the range of the ground surface is 

Fig. 20. The normalized displacement amplitude of the ground surface versus x=b for the model of a circular inclusion with the radius of b subjected to the SH-waves 
with I ¼ 0.3, DR ¼ 1.5b for different incident angles and dimensionless frequencies. 
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between -5b and 5b. First, to illustrate the reflections and diffractions of 
the incident waves, the results of time-domain are presented and then, 
the responses of frequency-domain in 3D and 2D mode are illustrated for 
some specific cases to demonstrate the general pattern of amplifications 
and displacements of the ground surface. 

7.1. Verification study 

In this section, some different examples are prepared to comparison 
the obtained results with the solutions presented by other researchers. 
The details of this examples are mentioned in the following subsections. 

7.1.1. Circular weakened inclusion 
As depicted in Fig. 3, an extremely soft circular inclusion is modeled 

in the depth of 1.5b subjected to the incident SH-waves. For this purpose, 
the dimensionless frequencies (η) of 0.5, 1.0, 1.5 and 2.0 as well as the 
impedance ratios (I) of 0.0007, 0.0006 and 0.0005 are considered. The 
incident SH-waves are applied vertically. Based on the different 
impedance ratios, the shear-wave velocities of (c2) of 2:52 m:s� 1, 2:16 m:
s� 1 and 1:8 m:s� 1 and the mass density (ρ2) of 0:67 ton:m� 3 are consid-
ered for the material of inclusion, respectively. Moreover, the values of 
the mentioned parameters for the surrounding medium are 2400 m:s� 1 

and 1 ton:m� 3. Additionally, the predominant frequency and maximum 
amplitude of the SH-waves of the Ricker wavelet type are equal to 3 Hz 
and 0.001 m and the time-shifting parameter is equal to 1.7 s. This 
problem is solved by 1000 time-steps with Δt of 0.004 s. The number of 
BEs considered for a circular inclusion is equal to 158 elements. By 

Fig. 21. The normalized displacement amplitude of the ground surface versus x=b for the model of a circular inclusion with the radius of b subjected to the SH-waves 
with I ¼ 0.5, DR ¼ 1.5b for different incident angles and dimensionless frequencies. 
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considering that the behavior of an extremely soft inclusion is similar to 
the response of a hollow cavity, the results of Lee (1977), Benites et al. 
(1992) and Luco and de Barros (1994) are used for this verification 
example. Comparing the obtained results of the present study for the 
extremely weakened material of inclusion with the analytical solutions 
of hollow cavities presented by the mentioned researchers illustrates a 
good agreement for I ¼ 0:0005. In another verification example for 
circular inclusion, the responses of Dravinski and Sheikhhassani (2013) 
for an extremely soft inclusion are compared to the numerical responses 
of the present study and also to the analytical results of Lee (1977) for a 
circular cavity. In the study of Dravinski and Sheikhhassani (2013), the 
direct frequency-domain full-plane BEM approach was used to show 
ground surface displacements in presence of an extremely soft circular 

inclusion. Fig. 4 shows the normalized displacement amplitude (NDA) of 
the surface for the incident angles (θ) of 0� and 90� . The effective pa-
rameters are considered similar to the previous example, and the ob-
tained diagrams are completely coincident. 

7.1.2. Circular inclusion 
Figs. 5 and 6 compare the obtained responses of the present study for 

a subsurface circular inclusion with those presented analytically by 
Yuan (1996). The depth ratios (DR) of 1.1b, 2.0b, 4.0b and 6.0b as well as 
the incident angles of (θ) of 0� and 90� are considered, respectively. In 
addition, the dimensionless frequency (η) is equal to 0.5 and the surface 
range is between -3b and 3b. Moreover, Figs. 7 and 8 show the numerical 
results of Dravinski and Yu (2011) obtained using the frequency-domain 

Fig. 22. The normalized displacement amplitude of the ground surface versus x=b for the model of an elliptical inclusion with the radius of b subjected to the SH- 
waves with I ¼ 0.3, DR ¼ 1.5b for different incident angles and dimensionless frequencies. 
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full-plane BEM. The depth ratio (DR) is 2.0b, and the incident angles (θ) 
are 0� and 90� , respectively. Moreover, the dimensionless frequencies 
(η) of 0.5 and 1.0 are considered and the surface range is between � 10b 
and 10b. 

7.1.3. Elliptical inclusion 
The results of the present study are compared with those presented 

by Dravinski (1983) by an indirect frequency-domain BEM and for an 
underground elliptical inclusion. Fig. 9 shows the normalized displace-
ment amplitude (NDA) of the surface in presence of the mentioned 
topographic feature. Like the previous verification examples, a good 
agreement between the responses are achieved that shows the suitable 
performance of the proposed method. 

7.2. Time-domain responses 

Figs. 10–15 are presented to show the general pattern of responses in 
time-domain and illustrate the scattering of the SH-waves in presence of 
a single circular/elliptical inclusion. Three stations are marked on the 
figures by D, R and C which show the paths of the direct, reflected and 
crawled waves, respectively (Keller, 1962). Based on the mentioned 
explanations, for the circular inclusion with I ¼ 0.1 and θ ¼ 0� , by 
colliding the waves to the boundary of inclusion, because of the 
extremely soft content of inclusion compared to the surrounding me-
dium, the most part of the waves is reflected directly from the boundary 
of inclusion and the other part is crawled on the surface of its boundary 
and is then reflected after hitting the surface. In fact, when I  ¼ 0.1, the 
boundary of inclusion acts like a mirror and does not allow the high 
volume of the waves to enter into inclusion or leave it extremely fast. 

Fig. 23. The normalized displacement amplitude of the ground surface versus x=b for the model of an elliptical inclusion with the radius of b subjected to the SH- 
waves with I ¼ 0.5, DR ¼ 1.5b for different incident angles and dimensionless frequencies. 
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Thus, a small part of the waves is trapped inside inclusion and cannot 
leave the medium quickly. On the other hand, some parts of the 
mentioned reflected and crawler waves are trapped between the top 
boundary of inclusion and ground surface. Therefore, the duration of the 
convergence time of the results increases when I  ¼ 0.1. When I  ¼ 0.1 
and θ ¼ 30� , the amplitudes decrease right behind the location of in-
clusion relative to the direction of the waves front. This effect is also 
visible for the response of θ ¼ 0� known as "shadow zone" (Trifunac, 
1973). However, in the results of θ ¼ 60� and 90� , this phenomenon is 
stronger and the lower amplitudes are formed behind inclusion. More-
over, when θ ¼ 90� ; the effect of the crawler waves on the ground 
surface is significantly reduced. Thus, the existing of an inclusion with I   
¼ 0.1 does not allow the waves to cross easily and reach the behind side 
of inclusion relative to the angle of the incident waves and acts similar to 
a barrier. 

When I  ¼ 0.3, the stiffness of the inclusion material slightly increases 
and is to some extent closer to the stiffness of the surrounding medium. 
Thus, a higher volume of the waves can enter into the medium of in-
clusion and the volume of the reflected and crawler waves decrease on 
the boundary of inclusion. Moreover, the lower volume of the waves 
may be trapped inside inclusion or between the boundary of inclusion 
and the ground surface. Accordingly, the convergence of the results can 
be achieved in a shorter time and the reduction effect of inclusion on the 
amplitudes of the incident waves will be weaker than the previous cases; 
this will be the main reason for lower reflected and crawler paths am-
plitudes. By comparing the results of I  ¼ 0.5 for circular inclusion to 
lower impedance ratios, one can see the lowest complexity of the re-
sponses for I  ¼ 0.5. Contrary to the previous cases, the existence of in-
clusion with a stiffness equal to half of the stiffness of the surrounding 
medium leads to the accumulation and amplification of the amplitudes 
of the incident waves in the location of inclusion. On the other hand, the 
amplitude of the reflected and crawler waves is significantly reduced, 
showing the congruent behavior of the inclusion material alongside the 
outer medium. Moreover, the weakest effect of the shadow zone is 
formed behind inclusion which is because of the lowest barrier effect of 
inclusion for these cases; thus, the convergence can be achievable 
extremely faster. 

By comparing the responses of elliptical and circular inclusion, one 
can see that the required convergence time is slightly lower for the 
elliptical case. This difference is because of the specific shape of ellip-
tical inclusions that leads the reflected and crawler waves in the way 
with lower effects on the ground surface; thus, the trapped waves be-
tween inclusion and the ground surface will decrease as well. On the 
other hand, the smaller medium of elliptical inclusion leads to fewer 
trapped waves into the medium of inclusion. Like the previous cases, one 
can see the diminish of waves amplitude on the location of inclusion and 
the complexity in the response of elliptical inclusion with I  ¼ 0.1 and 
θ ¼ 0� is lower than the circular model. In fact, when the vertical waves 
hit the below boundary of the elliptical inclusion, the barrier effect of 
inclusion is stronger than the circular inclusion and the waves cannot 
crawl on the boundary of inclusion and reach the ground surface 
properly. In the case of elliptical inclusion with I  ¼ 0.1 and θ ¼ 90� , 
one can see the lowest effect of the shadow zone due to existence of 
inclusion. When I increases to 0.3, the vibrations of synthetic seismo-
grams decrease. Moreover, the lowest amplitudes and required 
convergence time among the responses relate to the elliptical inclusion 
with I ¼ 0.5. 

7.3. Frequency-domain responses 

Figs. 16–19 show the 3D amplification patterns for different sce-
narios. In these figures, the amplification is the ratio of the surface 
response amplitude to free-field motion. The dimensionless frequency 
(η) is considered between 0.25 and 4.0. As the results show, for the 
circular inclusion with I  ¼ 0.3 and θ ¼ 0� , the form of response is 

completely symmetric and one can see extremely low values of ampli-
fications around the location of inclusion. When the incident waves 
collide to the boundary of inclusion, some part of these waves reflected 
and the other part is refracted inside the medium of inclusion. Moreover, 
another part of the incident waves crawls on the boundary of inclusion 
as well and finally reaches the ground surface. Thus, the values of dis-
placements decrease around inclusion, but the reflected and crawled 
waves are created the amplifications about 1.7, in a certain distance to 
the inclusion location. Furthermore, in some specific dimensionless 
frequencies, one can see the signs of high amplification where inclusion 
is located. This effect is because of the intermittent reflections of the 
trapped waves inside the medium of inclusion and those which trapped 
between the top boundary of inclusion and ground surface. By inclina-
tion of the waves front to θ ¼ 30� , the response is not symmetric. 
However, like the previous case, one still can see extremely low am-
plifications behind the location of inclusion relative to the angle of the 
waves front. When θ ¼ 60� , the maximum amplifications occur on the 
side that the incident waves are collided directly and then reflected 
reversely. These reflected waves due to presence of inclusion encounter 
the ground surface and increase the amplifications to about 2. However, 
on the other side of inclusion, the values of amplification are extremely 
low and an extremely small part of the waves is able to reach there by 
crawling on the boundary of inclusion. Unlike the case of θ ¼ 60� , in 
the model of circular inclusion with θ ¼ 90� , one can see the signs for 
higher amplifications in the behind zone of inclusion. In the case of θ ¼
90� , the circular shape of inclusion is the main reason in simplicity of 

the reflected waves to reach the surface. On the other hand, the crawler 
waves are slipped horizontally on the boundary of inclusion and their 
effect on the amplification is appeared on the behind of inclusion. An 
important note in the cases of circular inclusion with I  ¼ 0.3, is the value 
of maximum amplifications which are almost identical for different 
wave’s angles, but in θ ¼ 60� and θ ¼ 90� , the maximum amplifica-
tion is a slightly bit more than the other angles and it is recorded about 
2.4. 

By increasing the impedance ratio to I  ¼ 0.5, the more volume of the 
incident waves can enter inside inclusion and the volume of the reflected 
and crawler waves on the boundary of inclusion decreases. Therefore, 
the main reason in forming the maximum amplification in these cases, is 
the intermittent reflections of the incident waves inside inclusion. 
However, by taking a slightly distance from the middle point of the 
surface, the values of amplifications are extremely low. When θ is in-
clined to 60� , the form of obtained response is relatively similar to the 
result of I  ¼ 0.3 for the same case, but the main difference is the effect of 
the shadow zone which has been reduced when I  ¼ 0.5. Moreover, by 
comparing the responses of θ ¼ 90� for I  ¼ 0.3 and I  ¼ 0.5 for circular 
case, one can see that the barrier effect of inclusion on the path of the 
incident waves decreases when I  ¼ 0.5; thus, the dispersion of the 
incident waves in presence of a circular inclusion with I ¼ 0.5 decreases 
and the values of amplification are lower as well. Moreover, unlike the 
responses of I ¼ 0.3, the maximum amplification in I  ¼ 0.5 cases is 
occurred in θ ¼ 0� and it is higher than the maximum value of I  ¼ 0.3 
and recorded about to 2.7. 

In the 3D amplification patterns of elliptical inclusion for I  ¼ 0.3, the 
main differences in amplifications and vibrations of the surface are 
because of the specific shape of elliptical inclusion which cannot create 
the uniform paths of the reflected and crawled waves with a strong 
impact. In fact, the wide and smaller medium of elliptical inclusion in-
creases the volume of the trapped waves inside inclusion; thus, the 
separate vibrations are obtained in 3D diagram in which they do not 
follow the specific paths. This effect is extremely clear in the case of 
I ¼ 0.3 and θ ¼ 0� . By inclination of the wave’s front to reach the ho-
rizon, the paths for the crawler waves are easily formed on the boundary 
of inclusion that weakening the effect of the shadow zone and the waves 
can reach the behind zone of inclusion by crawling on it. In the 
following, the NDA responses of the mentioned models are illustrated for 
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the dimensionless-frequencies of 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0, respec-
tively. Presenting the mentioned 2D diagrams is the best way to see the 
maximum displacement amplitudes of the surface for separate dimen-
sionless frequencies and compare them for different scenarios. Thus, 
Figs. 20–23 are presented for these purposes. As the figures show, the 
lowest vibrations are recorded for circular and elliptical inclusion in 
I ¼ 0.5 and η ¼ 0:5. However, by increasing the (η) values, the 
complexity of diagrams increases too. The responses of θ ¼ 0� in 
different cases are symmetric. Moreover, the maximum NDA values is 
obtained in I ¼ 0.5 and in high η values, which is about 5.5 in both the 
circular and elliptical cases. 

8. Conclusion 

In this paper, a numerical approach called as direct half-plane time- 
domain BEM was developed and utilized for seismic analysis of the 
ground surface in presence of arbitrarily shaped subsurface inclusions, 
subjected to propagating obliquely incident plane SH-waves. In the use 
of mentioned method, the interface of inclusion connected to sur-
rounding domain was only discretized to establish the model. First, with 
the help of the sub-structuring process, the problem was decomposed 
into a pitted half-plane and a closed filled solid. After applying the 
method to each part of the model and subsequently obtaining all 
matrices, the coupled matrix was determined by satisfying continuity 
conditions at the interface. Finally, the boundary values including dis-
placements/tractions were obtained by solving the final equation in the 
time-domain. The method was implemented in developing the algo-
rithm of DASBEM. The precision of the method was investigated by 
analyzing several examples and comparing the results with those of the 
published works. The appropriate agreement and high accuracy of the 
proposed method were visible in diagrams. Then, to complete the re-
sults, some graphs of the ground surface were presented for subsurface 
circular/elliptical soft inclusions as synthetic seismograms, amplifica-
tion patterns and displacements of the ground surface. Although, the 
proposed method was utilized to analyze the ground response on the 
geotechnical earthquake engineering, inclusion problems are always 
one of the most important problems in mechanical engineering to 
investigate the composite materials. Therefore, the use of method is 
practically proposed to researchers who are focused their investigations 
on the time-history analysis of such materials with arbitrarily shaped 
multiple inclusions. The results of the present paper can be summarized 
as follows:  

1 By preparing the simple models, half-plane time-domain BEM was 
available for time-history step-by-step seismic analysis of the ground 
surface in presence of arbitrarily shaped subsurface inclusions. 

2 By comparing the responses of underground cavity alongside inclu-
sion, it can be observed that the role of subsurface soft inclusion was 
weaker on the seismic isolation and create the safe area on the 
ground surface.  

3 Synthetic seismograms of the surface showed that by increasing the 
angle of the incident waves, the direct impact of the waves on the 
surface decreased and the path of direct waves distanced from the 
reflected and crawled waves paths. When the impedance ratio (I) was 
extremely low, the amplitudes decreased in the behind side of in-
clusion relative to the direction waves front known as "shadow zone" 
and the strongest effect of this phenomenon was emerged when 
I ¼ 0.1.  

4 When the geometry of inclusion was circular, the uniform paths of 
the reflected and crawled waves were formed with a great impact on 
the ground surface. However, the wide and small shape of elliptical 
inclusion did not allow the waves to crawl on the boundary of in-
clusion simply; thus, the occurrence of amplifications was because of 
increasing the volume of the trapped waves inside the medium of 
inclusion.  

5 The amplification patterns of the surface showed that increasing the 
angle of the incident waves affected the fluctuations on the side of 
the incoming wave front. In the cases of I ¼ 0.5 and the incident 
angles of θ ¼ 0� and θ ¼ 30� , the maximum amplifications were 
observed right above inclusion. However, the areas far from the 
incoming waves front were amplified in the cases of θ ¼ 60� and 
θ ¼ 90� . Moreover, the maximum recorded displacement value of 
the ground surface was related to the I ¼ 0.5 and high η values for 
both the circular and elliptical cases. 
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