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Surface Motion of Alluvial Valleys Subjected to Obliquely Incident 
Plane SH-Wave Propagation
Mehdi Panji and Saeed Mojtabazadeh-Hasanlouei

Department of Civil Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran

ABSTRACT
In this paper, a simple numerical model is presented for analyzing arbitrarily 
shaped alluvial valleys subjected to propagating obliquely incident plane SH- 
waves. A time-domain half-plane boundary element method (BEM) was success-
fully used to prepare the model in which the interface needs only to be 
discretized. First, the problem was decomposed into two parts, a half-plane 
valley-shaped feature and a closed filled alluvium. Then, the method was applied 
to each part to obtain the considered matrices. Finally, by satisfying the con-
tinuity conditions at the interface, the coupled equation was transiently solved 
to determine the boundary values. All ground surface responses were also 
obtained in a secondary solution as internal points. After implementing the 
method in a general algorithm, several practical examples were analyzed to 
validate the responses. Moreover, an advanced numerical study was performed 
to sensitize the surface motion of semi-cylindrical alluvial valleys with variable 
shape ratios as synthetic seismograms and three-dimensional (3D) amplification 
patterns. The proposed method can easily be combined with other numerical 
methods to achieve nonlinear site responses.
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1. Introduction

In the last decades, the behavior of alluvial valleys in seismic mode and their important role in the 
amplifications/de-amplifications of ground surface responses have been recognized by seismologists 
and engineers as major topics, reflected in some seismic codes (Aki 1988; Davis and West 1973; 
Sánchez-Sesma 1987). Therefore, numerous studies focused on the effective parameters of alluviums 
and damage investigations in their gamut during earthquakes (Aki 1993; Bard and Bouchon 1980a, 
1980b; Manoogian and Lee 1999). This phenomenon may be due to various factors such as local 
conditions and quality of constructions, effects of topographic features, superficial soil characteristics, 
and local geological behaviors (Wong and Trifunac 1974a). In this way, various approaches have been 
applied by numerous authors to model and analyze the problems of wave scattering for predicting the 
real responses of alluvial valleys. All these efforts were made to determine reliable design parameters 
and decrease damages as much as possible (Esteva 1977), providing a new insight into the behavior of 
alluviums and clarifying the basic aspects of this problem (Aki and Larner 1970; Boore 1972; Bouchon 
1973; Trifunac 1971, 1973; Wong and Trifunac 1974a).

From a technical point of view, these approaches can be divided into analytical, semi-analytical, 
experimental, and numerical methods, each with certain advantages and disadvantages (Sánchez- 
Sesma, Palencia, and Luzón 2002). In the use of analytical and semi-analytical approaches, the analysis 
process will be highly complicated due to the low flexibility and high complexity of equations, 
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especially for complex problems and geometries. For this reason, the use of analytical and semi- 
analytical methods is limited to the simple models. On the other hand, the achieved responses from 
these methods are very accurate. The pioneering studies by analytical and semi-analytical methods on 
the seismic behavior of alluvial valleys and canyons were conducted in the early 1970s, including the 
analytical study by Trifunac (1971), Trifunac (1973), Wong and Trifunac (1974a), Wong and Trifunac 
(1974b). Lee (1984) studied the three-dimensional (3D) diffraction of plane P, SV, and SH-waves in the 
presence of a hemispherical alluvial valley. Todorovska and Lee (1991) investigated the surface motion 
of shallow circular alluvial valleys. The 2D scattering of plane SH-waves by a cylindrical alluvial valley 
was addressed by Yuan and Liao (1995). Sherif and Lee (1996) investigated the wave propagation 
behavior around a circular alluvial valley placed subjected to SH-waves. Weihua, Chenggang, and 
Peixin (2005) proposed an analytical solution for the scattering of plane P-waves due to circular-arc 
alluvial valleys placed in saturated soil. The diffraction of plane P-waves by a hemispherical alluvial 
valley placed in saturated soil was presented by Gao, Zhao, and Dong (2006). Then, Tsaur and Chang 
(2008a) and Tsaur and Chang (2009) studied the scattering of SH-waves in the presence of a partially 
filled semi-circular alluvial valleys and canyons. Faik-Kara and Trifunac (2013) proposed a note for 
plane-wave approximation, followed by Jalali, Tokmechi, and Trifunac (2015) were presented a note 
for surface motion determination in the presence of a semi-cylindrical alluvial valley subjected to SH- 
waves. In another study, Faik-Kara and Trifunac (2014) investigated on the earthquake vibration effect 
due to SH-waves on sedimentary basins. Some other researchers such as Zhang et al. (2012), Chang, 
Tsaur, and Wang (2013) and Chang, Tsaur, and Wang (2015) were focused on the problem of 
asymmetrical canyons. Using wave function expansion method, Zhang, Gao, and Pak (2017) and 
Le, Lee, and Trifunac (2017) studied the SH-waves scattering in the presence the semi-cylindrical and 
moon-shaped valleys, respectively. Recently, Tsaur and Chang (2018) were able to propose an exact 
solution for the scattering of SH-waves in the presence of an elliptic-arc canyon analytically. In these 
studies, the wave function expansion method was utilized.

Due to the mentioned limitations of analytical and semi-analytical methods in the modeling of 
complex geometries, the use of numerical methods became inevitable (Sánchez-Sesma and 
Rosenblueth 1979). For example, Sánchez-Sesma and Esquivel (1979) focused on the motions of the 
ground surface in the presence of alluvial valleys subjected to incident plane SH-waves. The wave 
amplification by two alluvial valleys subjected to P and SV-waves was addressed by Dravinski (1983). 
The mentioned studies were formulated by Fredholm integral equations and a boundary integral 
method, respectively, and were then numerically solved. By the development and improvement of 
computing devices in recent decades, numerical methods have received more attention from research-
ers. This category of approaches has been developed in different branches of domain and boundary 
methods. The finite-element method (FEM) and finite-difference method (FDM) are known as the 
main domain methods. When domain methods are employed, the domain of the problem should be 
discretized and the energy absorber boundaries should be considered. These circumstances are 
inseparable parts of modeling and analysis in both infinite and semi-infinite continuous media. 
Thus, this can increase the complexity of problems and lead to a longer analysis time. Studies of 
Lysmer and Drake (1972), Smith (1975), Kawase and Sato (1992), and Bielak, Xu, and Ghattas (1999) 
are the pioneering investigations using FEM. In these studies, they highlighted the application of the 
mentioned method in seismology, developed the analytical approaches of body wave propagation and 
examined the ground surface motion during an earthquake and structural seismic responses in 
presence of alluvial valleys, respectively. Recently, Nohegoo-Shahvari, Kamalian, and Panji (2018, 
2019) introduced a 2D seismic analysis of an alluvial valley subjected to vertically incident SH-waves 
by FEM. Using FDM, Frankel and Vidale (1992) were simulated the seismic waves in the Santa-Clara 
valley. The wave diffraction, amplification and differential surface motion near the strong lateral 
discontinuities were presented by Moczo and Bard (1993). Moreover, the response of an irregular free 
surface based on the traction image technique and scattering of SH-waves were presented by Zhang 
and Chen (2006) and Zhou and Chen (2006), respectively. Wang et al. (2015) investigated the effect of 
near-surface topographic features subjected to the high-frequency Rayleigh waves by FDM. 
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Furthermore, Komatitsch and Vilotte (1998) and Paolucci (2002) simulated the seismic responses of 
2D/3D geological structures and explored the amplification of earthquakes on ground surface by steep 
topographic features using the spectral-element method. Also, the seismic response of rectangular 
alluvial valleys due to incident SV-waves was presented by Najafizadeh et al. (2014) using the same 
approach. Other researchers combined two or more approaches and used their benefits for modeling 
and analyses. These approaches are known as hybrid methods. For example, using an indirect 
boundary element/discrete wavenumber, Gil-Zepeda et al. (2003) were able to simulate the seismic 
response of stratified alluvial valleys. Also, the seismic site effect for 2D topographical irregularities 
and the behavior of sedimentary valleys were explored by Gatmiri, Arson, and Nguyen (2008a) and 
Gatmiri and Arson (2008b) with a 2D FEM/BEM approach.

Using boundary approaches, one dimension will be reduced in modeling, and Sommerfeld’s radiation 
conditions will be satisfied at infinity for wave dispersion. These methods concentrate the meshes only 
around the boundary of valley-shaped topography and the content of alluvium placed inside the mentioned 
valley. This method is divided into two categories of direct boundary element method (DBEM) and indirect 
boundary element method (IBEM), but DBEM was further developed and researchers have been more 
willing to take advantage of it. By utilizing boundary element method (BEM), one dimension of the models 
will be reduced and the radiation conditions of waves at infinity will be satisfied. The advantages of using 
boundary element method (BEM) compared to the domain approaches include concentration of meshes 
only around the boundary of desired topographic features, automatic satisfaction of wave radiation 
conditions in far boundaries, lower volume of input data, significant reduction in occupied memory and 
analysis time beside extremely high accuracy of exported results because of the large contribution of 
analytical processes in solving problems (Kamalian et al. 2007). In addition, DBEM can be divided into two 
categories of full-plane and half-plane, each being developed in frequency and time-domain. This approach 
can also be used in static (Panji and Ansari 2017a; Panji, Asgari Marnani, and Tavousi Tafreshi 2011; Panji 
et al. 2016) and dynamic modes (Panji and Ansari 2017b) based on the definition of different problems. The 
implementation of the formulation will be more difficult in half-plane BEM compared to full-plane BEM 
due to the satisfaction of ground surface boundary condition in the formulation. In half-plane BEM, there is 
no need to discretize the surface and define fictitious elements on the side boundaries, making the models 
simpler. Sánchez-Sesma and Rosenblueth (1979) conducted a basic study using half-plane frequency- 
domain BEM and presented the ground motion due to arbitrarily shaped canyons and incident SH-waves. 
Then, the 3D responses of a cylindrical canyon in a layered half-space were obtained by Luco, Wong, and 
De Barros (1990), and the responses of the Mexico City valley with a 2D BEM due to SH-waves were 
illustrated by Reinoso, Wrobel, and Power (1993). The seismic responses of semi-elliptical alluvial valleys 
due to incident SH, P, and SV-waves were also presented by Fishman and Ahmad (1995). In another study, 
Sánchez-Sesma and Luzon (1995) discovered the seismic response of 3D alluvial valleys subjected to P, S, 
and Rayleigh waves using the half-plane indirect BEM approach. Utilizing the same method, Luco and De 
Barros (1994) were studied the dynamic displacements of cylindrical cavity embedded in a half space. In 
this regard, some researchers, including Luco and Apsel (1983a, 1983b), Rajapakse and Wang (1993), 
Senjuntichai and Rajapakse (1994) and Hisada (1994a, 1994b), were able to present the Green’s functions of 
isotropic, transversely isotropic and poroelastic half-space. A few years later, the seismic responses of 
alluvial valleys for incidence SH-waves were presented by Ausilio, Conte, and Dente (2008). Recently, using 
indirect boundary integral equation method, Huang et al. (2019), Liang et al. (2019) and Liu et al. (2019) 
studied the elastic wave scattering by twin lining tunnels, a hill and in layered half-space, respectively. All of 
the noted studies were performed using the half-plane frequency-domain BEM.

In recent years, upon the development of the half-plane time-domain BEM by some researchers 
such as Panji (2013) and Panji et al. (2013a), the seismic analysis of various topographic features has 
been performed with this approach. The seismic analysis of semi-sine shaped valleys subjected to 
vertically propagating incident SH-waves was performed by Panji et al. (2013b) using a half-plane 
time-domain BEM. A year after, the seismic response of convex topographies was examined by Panji 
et al. (2014a) using the mentioned approach. Also, the seismic response of a semi-sine shaped valley 
above an embedded truncated circular cavity was obtained by Panji et al. (2014b). Based on an indirect 
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BEM, the wave propagation of a complex local site in a layered half-space and the seismic response of 
alluvial valleys subjected to SH-waves were discovered by Ba and Yin (2016) and Ba and Liang (2017), 
respectively. Recently, Panji and Mojtabazadeh Hasanlouyi (2018) illustrated the synthetic seismo-
grams of the ground surface in the presence of regularly distributed enormous embedded cavities 
using a half-plane time-domain BEM. The seismic amplification pattern of the ground surface in 
presence of twin unlined circular tunnels subjected to SH-waves was presented by Panji and 
Mojtabazadeh-Hasanlouei (2019a). In another study, Panji and Mojtabazadeh-Hasanlouei (2019b) 
presented the transient response of irregular surface by periodically distributed semi-sine shaped 
valleys subjected to SH-waves. Moreover, the SH-wave dispersion by a single circular and elliptical 
inclusion was addressed by Panji, Mojtabazadeh-Hasanlouei, and Yasemi (2020).

The literature review shows that the scattering effect of transient SH-waves on the ground surface in 
the presence of alluvial valleys has not yet been directly analyzed in the time-domain by half-plane BEM. 
In previous researches, the models were limited to the homogeneous single-material subsurface pro-
blems. Although in some researches such as Lubich (1988), Garcia-Sanchez and Zhang (2007) and 
Manolis et al. (2017) etc., the mathematical formulation, numerical implementation and transient 
analysis of two-dimensional non-homogeneous solids were presented as well, they were established to 
obtain the time-domain responses by the inverse Fourier/Laplace-transform algorithm from mechanical 
problems point of view. Moreover, researchers like Takemiya and Fujiwara (1994) were able to presented 
the time-domain responses for an alluvial valley, but they used full-plane time-domain BEM approach.

In this study, based on an advanced half-plane time-domain BEM, the surface response of a linear 
elastic alluvial valley is obtained due to propagating obliquely incident out-of-plane SH-waves. Although 
the proposed approach is classified in the group of numerical methods, it can be believed that this 
method is a kind of time-domain semi-analytical scheme because the closed-form transient kernels of 
the method have already been extracted. On the other hand, given that the actual behavior of the 
sedimentary basins is a non-linear response, it is necessary to analyze these features directly in the time- 
domain by a favorite approach. Therefore, in the present work, an efficient time-domain BEM is 
proposed to prepare a simple model of alluvial valleys by locating only a few nodes on the interface. 
Consequently, the analysis time, which is one of the problems of the transient solution in heterogeneous 
models, is significantly reduced. It is worth mentioning, unlike the other time-domain methods that the 
temporal integration is carried out in an approximate numerical process, the present results were stable 
against time-step changes due to the use of closed-form kernels. After developing the method to analyze 
the problem of the alluvial valley, it was implemented in a general algorithm previously called 
DASBEM1 (Panji et al. 2013a). Then, a verification example was solved for the problem of a semi- 
circular alluvial valley to illustrate the accuracy and performance of the method. Next, the time-domain 
responses of the surface were obtained for semi-cylindrical alluvial valleys as synthetic seismograms in 
the form of a numerical study. Some key parameters, including the incident wave angle, depth ratio, and 
impedance ratio of the alluvium to the surrounding medium, were considered to sensitize the response 
behavior. Finally, the blanket amplification patterns were presented for some specific cases to demon-
strate the frequency-domain responses. The main aim of this study was to reveal the power and 
accuracy of this developed algorithm in presenting time-domain responses for complicated engineering 
problems and present a better view of alluvial valleys’ seismic behavior. The introduced method can be 
used by geotechnical/mechanical engineers to model the structures with arbitrarily shaped surfaces such 
as alluvial valleys in the fields of earthquake engineering and nanoscaled composite materials as well.

2. Problem Statement

As illustrated in Fig. 1, a linear elastic homogeneous and isotropic half-plane is considered as the medium of 
the models, and an alluvial valley is located in this medium. Therefore, based on Fig. 1, Γ is the boundary of 
the body defined separately for the valley and alluvium, DR represents the depth ratio of the valley, and 
b denotes the width of the valley. Moreover, Ω is the domain, and the subscripts 1 and 2 are related to the 
medium and alluvium, respectively. Also, θ is the angle of incidence waves, and parameter n is the normal 
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vector perpendicular to the surface and dependent on the node numbering direction. The models are 
subjected to incident out-of-plane SH-waves of the Ricker type (Panji et al. 2013a, 2013b). Figure 2 shows 
the diagrams of the Ricker wavelet for a point located on the free surface in time and frequency-domain, 
respectively. Moreover, the function of a Ricker wavelet type is defined as Eq. (1) (Ricker 1953): 

f tð Þ ¼ 1 � 2 πfp t � t0ð Þ
� �2

h i
e� πfp t� t0ð Þð Þ

2

; (1) 

In Eq. (1), fp is the predominant frequency of the wave and t0 is the time shift parameter. Since the 
modeling is completely conducted in half-plane and the stress-free boundary conditions of the ground 
surface are satisfied, free-field displacement (uff ) can be obtainable by adding the phase of incident and 
reflected waves as follows (Reinoso, Wrobel, and Power 1993): 

uff x; y; tð Þ ¼ αmax:

1 � 2 πfp
c αinc:

� �2
" #

e�
πfp

c αinc:
� �2

H t � rinc:

c

� �
þ

1 � 2 πfp
c αref :

� �2
� �

e�
πfp

c αref
� �2

H t � rref :

c

� �

0

B
B
B
@

1

C
C
C
A
; (2) 

where αinc:, αref :, rinc: and rref : can be achieved from the following equations: 

Figure 1. The problem geometry of an alluvial valley placed in an elastic half-plane subjected to incident SH-waves.

Figure 2. The diagram of the Ricker wavelet for a point located on free-field for (a) time-domain and (b) frequency-domain.
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αinc: ¼ c t � t0ð Þ þ rinc:; rinc: ¼ � sin θð Þ � xþ cos θð Þ � y; (3) 

αref : ¼ c t � t0ð Þ þ rref :; rref : ¼ � sin θð Þ � x � cos θð Þ � y; (4) 

On the other hand, the equation of motion for the anti-plane strain model is as follows: 

@2u x; y; tð Þ

@x2 þ
@2u x; y; tð Þ

@y2 þ b x; y; tð Þ ¼
1
c2
@2u x; y; tð Þ

@t2 ; (5) 

In Eq. (5), u(x, y, t) and b(x, y, t) are out-of-plane displacement and body force at the point (x, y) and 
current time t, respectively. Furthermore, c is the shear-wave velocity determined by 

ffiffiffiffiffiffiffiffi
μ=ρ

p
, in which μ 

is the shear modulus and ρ is the mass density. Regardless of any boundary condition on the singular 
solution of Eq. (5), the full-plane Green’s functions were achieved (Israil and Banerjee 1990a, 1990b). 
However, to obtain a 2D anti-plane semi-infinite medium, Eq. (5) should be solved by the following 
boundary condition: 

@u x; y; tð Þ

@n

�
�
�
�

y¼0
¼ 0; (6) 

By simultaneously taking the singular solution into account for Eqs. (5) and (6), the half-plane Green’s 
functions can be obtained (Panji et al. 2013a).

3. Time-Domain Half-Plane Boundary Element Method (BEM)

Using the wave source image technique (Panji et al. 2013a) and satisfying the boundary conditions 
related to the ground surface, one can exclusively concentrate the meshes around the boundary of the 
valley. The details of this method are mentioned in the following section.

3.1. Boundary Integral Equation (BIE)

In the first step, without considering any boundary conditions of Eq. (6), the weighted residual integral 
was applied to Eq. (5). Then, by performing twice integration by parts, eliminating the volumetric 
integral defined on the domain using boundary methods, and ignoring the contributions of the initial 
conditions and body forces, the direct boundary integral equation (BIE) in the time-domain can be 
obtained as Eq. (7) (Brebbia and Dominguez 1989; Dominguez 1993; Reinoso, Wrobel, and Power 
1993): 

c �ð Þu �; tð Þ ¼

ð

Γ

ðt

0

u� x; t; �; τð Þ � q x; tð Þ � q� x; t; �; τð Þ � u x; tð Þ½ �dτ

8
<

:

9
=

;
dΓ xð Þ; (7) 

In Eq. (7), u� and q� are the half-plane displacement and traction Green’s functions of the time-domain, 
respectively (Panji et al. 2013a). Also, u and q are the displacements and traction fields on the boundary, 
respectively. Moreover, Γ denotes the boundary, and x and ξ depict the coordinates of source and 
receiver, respectively. Additionally, u�:q and q�:u are the Riemann-convolution integrals, and c �ð Þ
represents the angle of boundary refraction defined as the geometry coefficient (Dominguez 1993). 
Then, to obtain the free-field displacement, by summing the incident and reflected wave-field, the BIE 
(Eq. (7)) can be modified to the following from (Hadley, Askar, and Cakmak 1989; Kawase 1988): 

c �ð Þu �; tð Þ ¼

ð

Γ

ðt

0

u� x; t; �; τð Þ � q x; tð Þ � q� x; t; �; τð Þ � u x; tð Þ½ �dτ

8
<

:

9
=

;
dΓ xð Þ þ uff �; tð Þ; (8) 
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where uff indicates the free-field displacement on the ground surface without the presence of any surface 
irregularities. By solving Eq. (8), the total displacement of the alluvial valley can be obtained. In this step, 
it is possible to obtain the displacements at any point m in Ω, including the ground surface (y ¼ 0). The 
following modified equation can be used for internal points. In this step, cm �ð Þ should be equal to 1.0. 

um �; tð Þ ¼

ð

Γ

ðt

0

u�m x; t; �; τð Þ � q x; tð Þ � q�m x; t; �; τð Þ � u x; tð Þ½ �dτ

8
<

:

9
=

;
dΓ xð Þ þ uff :m �; tð Þ; (9) 

in which the half-plane displacement and traction Green’s functions for each internal point are shown 
by u�m and q�m, respectively. Moreover, the free-field displacements are depicted by uff :m which should 
be recalculated in this step.

4. Numerical Implementation

In this step, the time-axis should be considered and the geometric boundary of the body should be 
discretized before solving Eq. (8) and obtaining the field variables. In fact, the mentioned equation is 
an exact solution until reaching this step, and there is no approximation in this equation before 
applying the discretization on the boundaries of the valley and alluvium. To perform the temporal 
integration, the analytical process is required, and then the numerical procedure should be performed 
to achieve the spatial integration.

4.1. Temporal Integration

By considering Δt, the time interval will be divided into N equal increments from 0 to t, where 
t ¼ NΔt, and the field variables can be assumed to remain linear within each time-step. By preparing 
the temporal integrations, the time-convoluted BIE can be rewritten as Eq. (10): 

c �ð ÞuN �ð Þ ¼
XN

n¼1

ð

Γ

UN� nþ1
1 x; �ð Þqn xð Þ þ UN� n

2 x; �ð Þqn xð Þ
� �

�

QN� nþ1
1 x; �ð Þun xð Þ þ QN� n

2 x; �ð Þun xð Þ
� �

� �

dΓ xð Þ þ uff :N �ð Þ; (10) 

in which, UN� nþ1
1 and UN� n

2 are the half-plane displacement time-convoluted kernels and QN� nþ1
1 and 

QN� n
2 are the half-plane traction time-convoluted kernels. Theses kernels correspond to the forward 

and backward time-nodes within a time-step, shortened in the closed-form. The boundary displace-
ment and free-field displacement are demonstrated as uN and uff :N ; respectively, at time t ¼ NΔt. The 
full form of the time-convoluted kernels of anti-plane elastodynamics for half-plane displacement and 
traction is introduced by Panji et al. (2013a, 2014a).

4.2. Spatial Integration

The isoparametric quadratic elements are used to discretize the boundary of the domain for perform-
ing spatial integration in the numerical form, and all the quantities related to the geometry and field 
variables are given in terms of nodal variables. 

xi κð Þ ¼ Na κð Þxia; (11) 

f x κð Þð Þ ¼ Na κð Þfa; (12) 

In these equations, f is the displacement and traction, and Na κð Þ is the quadratic shape functions in 
which κ is the local intrinsic coordinates of the elements. By considering the spatial discretization, Eq. 
(10) can be rewritten as Eq. (13): 
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c �ð ÞuN �ð Þ ¼
XN

n¼1

XM

m¼1

ð

Γm

UN� nþ1
1 x κð Þ; �ð Þ þ UN� n

2 x κð Þ; �ð Þ
� �

Nα κð Þ Jj jdκqn
α�

ð

Γm

QN� nþ1
1 x κð Þ; �ð Þ þ QN� n

2 x κð Þ; �ð Þ
� �

Nα κð Þ Jj jdκun
α

2

6
6
6
6
4

3

7
7
7
7
5
þ uff :N �ð Þ; (13) 

where UN� nþ1
1 þ UN� n

2 and QN� nþ1
1 þ QN� n

2 are the closed form of scalar half-plane displacement and 
traction kernels, respectively (Panji 2013; Panji et al. 2014b). In addition, uff :N and uN are the free-field 
motion and displacement field in time step N, respectively. Na κð Þ is the quadratic shape functions in 
which κ is the local intrinsic coordinates of the elements. Also, un and qn are displacement and traction 
vectors, respectively. In Eq. (13), the total number of boundary elements of the alluvial valley is 
presented by M. The portion of boundary to element ‘m’ is indicated by Γm, and J denotes the Jacobian 
of transformation. To calculate J, the following equation can be applied (Dominguez 1993): 

Ji ¼
@Nα κð Þ
@κ

xiα; (14) 

4.3. Time-Stepping Algorithm

By discretizing the geometry boundary of the problem using three-node quadratic elements and 
forming the spatial integration of Eq. (13) for all BEs, the following matrix equation can be derived: 

XN

n¼1
HN� nþ1 unf g ¼

XN

n¼1
GN� nþ1 qnf g þ uff :N� �

; (15) 

By integration over the boundary elements, the elements of HN� nþ1 and GN� nþ1 matrices can be 
obtained. The vectors of boundary nodal quantities at time-step n are indicated by unf g and qnf g. 
When the tractions on the boundary of the alluvial valley are absent, the term GN� nþ1 qnf g should be 
considered equal to zero. 

A1
1

� �
XN� �

¼ B1
1

� �
YN� �

þ RN� �
þ uff :N� �

; (16) 

in which: 

RN� �
¼
XN� 1

n¼1
GN� nþ1 qnf g � HN� nþ1 unf g
� �

; (17) 

In Eq. (16), XNf g and YNf g are the vectors including unknown and known variables, respectively, and 
RNf g includes the effects of past dynamic-history on the current time-node N. By solving Eq. (16), all 

boundary unknowns at each time-step can be calculated, and the displacements at any internal point 
“m” placed in the domain can be obtained.

5. Modeling

According to the sub-structuring process utilized in the half-plane time-domain BEM approach, based 
on Fig. 1, the alluvial valley must be divided into two parts, including a half-plane with a valley as the 
first part and a closed filled alluvium as the second part. The details of the modeling are presented in 
the following sections.
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5.1. Part I: Hollow Valley

This part includes a half-plane medium with a surface valley subjected to seismic SH-waves. If the 
interface nodes of the valley connected to the surrounding domain are identified by subscript 12, the 
discretized BIE for this part at time step N can be written as follows: 

H1
12uN

12 ¼ G1
12qN

12 þ RN
12 þ uff :N

12 ; (18) 

In this equation,RN
12 is the past dynamic time history of the interface belonging to the first part and in 

the step N defined as follows: 

RN
12 ¼

XN� 1

n¼1
GN� nþ1

12 qn
12 � HN� nþ1

12 un
12

� �
; (19) 

Also, uN
12 is the displacement and qN

12 is the traction field of interface Γ12 belonging to the first part, and 
uff :N

12 is the free-field motion of interface nodes.

5.2. Part II: A Closed Filled Alluvium

This part represents a closed filled solid medium as the alluvium. The interface nodes of this domain 
are identified by subscript 21, and the discretized BIE at the time step N can be written as follows: 

H2
21uN

21 ¼ G2
21 qN

21 þ RN
21; (20) 

in which: 

RN
21 ¼

XN� 1

n¼1
GN� nþ1

21 qn
21 � HN� nþ1

21 un
21

� �
; (21) 

where uN
21 and qN

21 are the displacement and traction fields of the interface Γ21 for the second part of the 
model, respectively. Also, RN

21 is the past dynamic time-history at time step N for the interface of 
the second part.

5.3. Assembling

In this step, the continuity conditions of the interface must be applied to solve the problem and obtain 
all the unknowns on the interface. Thus, the equilibrium conditions of displacement and the traction 
compatibility on the interface can be, respectively, presented as follows: 

uN
12 ¼ uN

21; (22) 

and 

μ1qN
12 ¼ � μ2qN

21; (23) 

where μ1 and μ2 are the shear modulus of the first and second parts of the model, respectively. Finally, 
by satisfying the mentioned conditions, the final matrix form of the assembled BIEs will be as follows: 

H1
12
� 1�μ1

G1
12

H21
1�μ2

G1
21

" #

uN
12

qN
12

� �

¼
RN

12
RN

21

� �

þ
uff :N

12
0

� �

; (24) 

By solving Eq. (24), all unknown values on the interface, such as displacements and tractions, can be 
obtained. Then, to calculate the displacements of the ground surface, the equations of the first part can 
be used by assuming c �ð Þ ¼ 1:0.
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6. The DASBEM Program

This program is based on the half-plane boundary element method (BEM) and prepared for the dynamic 
analysis of plane scalar time domain problems. The name of DASBEM is taken from Dynamic Analysis 
of Structures by Boundary Element Method as well. The mentioned program is developed for seismic 
analysis of 2D semi-cylindrical alluvial valley located in an elastic half-plane. The flowchart and the 
details of this program are presented in the study of Panji, Mojtabazadeh-Hasanlouei, and Yasemi (2020).

7. Verification Study

The formulation was implemented in a general half-plane BEM code, previously called DASBEM (Panji 
et al. 2013a). To demonstrate the accuracy of this algorithm for the dynamic analysis of surface topographic 
features, a model of a semi-circular alluvial valley was prepared, established by the half-plane time-domain 
BEM. The mentioned alluvial valley was placed on the surface of a linear elastic half-plane subjected to 
incident SH-waves with the angles ðθÞ of 0� , 30� , 60� and 90� . The results were compared with the 
analytical results of Manoogian (1992) and Tsaur and Chang (2008a) presented for a single semi-circular 
alluvial valley. Figure 3 depicts the normalized displacement amplitude (NDA) of the ground surface. NDA 
is the ratio of the Fourier amplitude of the total ground surface motion obtained by BEM for a defined 
frequency to the Fourier amplitude of the incident motion for the mentioned defined frequency. In this 
example, the values of 0.5 and 1.0 are considered for dimensionless frequency (η) defined as (η ¼ ωb=πc). 
In this equation, ω is the angular frequency of the wave, b is the radius of the semi-circular alluvial valley 
and c is the shear-wave velocity. The value considered for impedance ratio (I) in this example is 0.3. The 
impedance ratio (I) is the stiffness ratio of the alluvium to the surrounding medium and explained as 
ðI ¼ ρ2c2=ρ1c1Þ, in which ρ2 is the mass density and c2 is the shear-wave velocity of the alluvium and ρ1 
and c1 are the mass density and the shear-wave velocity of the surrounding medium, respectively. 
Therefore, the shear-wave velocity and the mass density of the alluvium are equal to 1080m:s� 1 and 
0:667ton:m� 3 and the values of 2400m:s� 1 and 1ton:m� 3 are considered for the surrounding medium as 
well. Additionally, the predominant frequency and maximum amplitude of the SH-waves of the Ricker 
wavelet type are equal to 3 Hz and 0.001 m, respectively, and the time-shifting parameter is equal to 1.8 s. 
This problem is solved by 1000 time-steps with Δt of 0.007 s. The number of BEs considered for the semi- 
circular alluvial valley is equal to 127 elements. The numerical procedure is implemented in MATLAB 
(2019) programming software. By comparing the results with the solutions presented by Manoogian (1992) 
and Tsaur and Chang (2008a), a good agreement can be observed for the model of a single semi-circular 
alluvial valley. This verification example illustrated the good performance and applicability of this method 
for the dynamic analysis of advanced and complex engineering problems.

8. Application Examples

To study the behavior of a single alluvial valley located in an elastic half-plane subjected to seismic SH- 
waves, several key parameters are considered in the models and their effects are separately clarified. 
Based on Fig. 1, DR is the depth ratio of the alluvial valley and the values of 0.5, 1.0, 1.5 and 2.0 are 
considered in the modeling. Moreover, the incidence anglesðθÞ of 0� , 30� , 60� and 90� . The impedance 
ratios (I) of 0.1, 0.3 and 0.5 are applied, respectively. At first, to illustrate the reflection and diffraction 
of incidence waves for different scenarios, the results of time-domain are presented and then the 
results of frequency-domain are illustrated for specific cases to display the general pattern of motions 
and amplification values on the ground surface.

8.1. Time-Domain Responses

Utilizing the time-domain results is the only possible way to show the reflection and diffraction of the 
incidence waves. Thus, to illustrate the general pattern of responses and indicate the scattering of SH- 
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waves in the time-domain, Figs. 4–15 are given for the model of an alluvial valley for different 
scenarios. The results are presented for the impedance ratios (I) of 0.1, 0.3, and 0.5 and the incidence 
angles ðθÞ of 0� , 30� , 60� and 90� , respectively. The factor of depth ratio (DR) is considered between 
0.5 and 2.0 as well. According to the previous studies on the reflection and dispersion of incidence 
waves, when the incidence SH-waves are applied to the model, three phases of the waves are formed. 
The first part contains waves directly hitting the ground surface. The second phase is related to the 
waves encountering the valley’s boundary which a part of these waves is reflected and the other part is 
refracted into the alluvium. Moreover, the third phase contains crawler waves slipping on the 
boundary of the valley, reaching the ground surface and being reflected (Keller 1962).

Based on the above explanations, in the case of I=0.1, DR = 0.5 and θ ¼0� , when the waves collide 
with the valley, some parts are directly reflected after hitting the valley’s boundary and the remaining 
part enters the medium of the alluvium. On the other hand, because of the low depth of the alluvium in 

Figure 3. Normalized displacement amplitude of the ground surface versus x=b for the model of a single alluvial valley with the 
radius of b subjected to SH-waves and the incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

for dimensionless 
frequencies (η) of 0.5 and 1.0.

Figure 4. Synthetic seismograms of the ground surface and the procedure of SH-waves dispersion with time for the model of an 
alluvial valley with I = 0.1, DR = 0.5 and incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.
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Figure 5. Synthetic seismograms of the ground surface and the procedure of SH-waves dispersion with time for the model of an 
alluvial valley with I = 0.1, DR = 1.0 and incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.

Figure 6. Synthetic seismograms of the ground surface and the procedure of SH-waves dispersion with time for the model of an 
alluvial valley with I = 0.1, DR = 1.5 and incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.

Figure 7. Synthetic seismograms of the ground surface and the procedure of SH-waves dispersion with time for the model of an 
alluvial valley with I = 0.1, DR = 2.0 and incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.
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lower values of DR, the crawler waves are quickly slipped on the valley’s boundary and reach the 
surface from the sides of the valley and are then reflected inside the medium of alluvium. Afterwards, 
the boundary of the valley acts like a mirror because of the very high stiffness of the outside medium 
compared to the stiffness of alluvium. Thus, the effect of wave trapping occurred inside the valley, 
resulting in high amplitude of displacements on the ground surface. Over time, this effect will increase 
the complexity of the results as well. For DR = 1.0, the regular form of the valley helps the waves to 
reflect uniformly. Therefore, this effect creates uniform paths of the trapped waves and the highest 
amplitudes appear in the middle of the alluvium where the paths of reflected waves encounter each 
other and gradually reduce the amplitudes over time. In I=0.1, DR = 1.5 and θ ¼0� , the higher volume 
of the refracted waves enters the alluvium, and the higher volume of crawler waves is slipped on the 
boundary of valley. In this case, the first collision of the wave paths occurs with more intensity. Also, 
the greater depth of the valley increases the arrival time and amplitude of the waves. Therefore, when 
DR = 1.5b, the complexity of the result is lower than the case of DR = 0.5, but the collision of the wave 
paths occurs with a higher intensity for higher DRs. For I=0.1, DR = 2.0 and θ ¼0� , because of the 
larger volume of influential waves and the longer paths traversed by waves inside the alluvium, the 

Figure 8. Synthetic seismograms of the ground surface and the procedure of SH-waves dispersion with time for the model of an 
alluvial valley with I = 0.3, DR = 0.5 and incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.

Figure 9. Synthetic seismograms of the ground surface and the procedure of SH-waves dispersion with time for the model of an 
alluvial valley with I = 0.3, DR = 1.0 and incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.
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complexity of the result is greatly decreased, while the amplitudes are very high. In fact, longer paths 
and higher amplitudes help the waves stay in their paths, even when they collide with each other. The 
main complexity is formed for the first time when they hit the boundary of the valley after entering the 
alluvium. Inclination of the wave front to θ ¼ 30� eliminates the symmetry of the results in all cases. 
When I=0.1 and θ ¼ 30� , the highest amplitudes emerge in the paths of waves parallel to the wave 
front and the incidence waves follow the same entrance paths into the alluvium. This effect is much 
clearer when the angle of incidence waves is closer to the horizon.

When I=0.3, the stiffness of the alluvium increases and leads to decrease the waves amplitude and lower 
displacements of the ground surface. Therefore, the results show a lower level of complexity compared to the 
results of I=0.1. Nevertheless, in the cases of I=0.3, the most vibrations are achieved in the lowest DR value 
which is because of small medium of alluvium for wave reflections. Like previous cases, increasing the DR 
value results in less complexity but higher amplitudes of responses. On the other hand, when the stiffness of 
alluvium is very low (I=0.1), by applying the oblique wave front to the models, the alluvium acts like a barrier 
and reduces the amplitudes of the motions on the opposite side to the wave front called the “shadow zone” 
(Trifunac 1973). In fact, the lower stiffness of the alluvium increases the effect of the shadow zone and this 
phenomenon is weaker for the models with higher impedance ratios. Thus, the results of I=0.1 cases 

Figure 10. Synthetic seismograms of the ground surface and the procedure of SH-waves dispersion with time for the model of an 
alluvial valley with I = 0.3, DR = 1.5 and incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.

Figure 11. Synthetic seismograms of the ground surface and the procedure of SH-waves dispersion with time for the model of an 
alluvial valley with I = 0.3, DR = 2.0 and incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.
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demonstrate the strongest effect on the attenuation and prevention of the wave passage which is clearer in 
higher DRs. Also, the results of I=0.5 for different DR values and incidence angles show that when the 
stiffness of the alluvium is equal to half compared to the stiffness of outside medium, the responses of the 
ground surface are closely similar to the free-field motions. Thus, the amount of complexity and amplitudes 
decreases and the required time for wave reflection and refraction is reduced as well. An essential point in the 
results is the role of alluvium’s stiffness in the required time to reach convergence in the responses. The lower 
stiffness of alluvium leads to a more flexible behavior and a higher volume of trapped waves inside the 
alluvium. Thus, more displacements will occur on the ground surface, and the waves leave the closed 
medium of alluvium more slowly. Therefore, more time will be needed to reach convergence and calmness in 
the results. However, by increasing the stiffness of the alluvium, its behavior becomes more similar to the 
outside medium of the valleys and the waves leave the model faster than the previous cases.

Figures 16–19 are presented to show the amplitude of incidence SH-waves against the time in the presence 
of a single alluvial valley with depth ratios (DR) of 0.5, 1.0, 1.5 and 2.0 and impedance ratio (I) of 0.3 for the 

Figure 12. Synthetic seismograms of the ground surface and the procedure of SH-waves dispersion with time for the model of an 
alluvial valley with I = 0.5, DR = 0.5 and incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.

Figure 13. Synthetic seismograms of the ground surface and the procedure of SH-waves dispersion with time for the model of an 
alluvial valley with I = 0.5, DR = 1.0 and incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.
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incidence angles ðθÞ of 0� , 30� , 60� , and 90� . For this purpose, three reference stations are considered on the 
surface where (1) and (3) are located at the edges and (2) is placed at the center of the alluvial valley as well. 
The results are compared beside the response of free-field to can see the difference of wave propagation in the 
time-domain. The amplitude is the ratio of ground surface displacement to the maximum acceleration of 
applied waves. As can be seen, when the angle of incidence waves ðθÞ is equal to 0� , the diagrams of stations 
(1) and (3) are coincident. But, by inclination of the wave front, the difference between diagrams is noticeable. 
As depicted in the figures, the maximum amplitude is occurred in DR = 1.5 and angle ðθÞ of 0� with 
amplitude of 8. In this model, the non-uniformity of alluvial valley section helped the waves to concentrated 
exactly on the position of station (2).

8.2. Amplification Patterns

Presenting the results of frequency-domain is the only possible way to demonstrate the general pattern 
of ground surface displacements in the presence of an alluvial valley and show its behavior subjected to 

Figure 14. Synthetic seismograms of the ground surface and the procedure of SH-waves dispersion with time for the model of an 
alluvial valley with I = 0.5, DR = 1.5 and incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.

Figure 15. Synthetic seismograms of the ground surface and the procedure of SH-waves dispersion with time for the model of an 
alluvial valley with I = 0.5, DR = 2.0 and incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.
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seismic waves. Therefore, Figs. 20–23 are provided for this purpose. In the presented results, the factor 
of amplification is defined as the ratio of surface response amplitude to free-field motion. In this 
section, the results of I=0.3 are presented for various angles of incidence waves and depth ratios. The 
range of amplification color-bar is set between 0 and 10 and the dimensionless frequency is considered 
between 0.25 and 3 in all of the responses. Also, the surface range is closed between −3b to 3b. Like the 

Figure 16. The amplitude of scattered waves on the ground surface for the model of an alluvial valley with I = 0.3, DR = 0.5 and 
incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.

Figure 17. The amplitude of scattered waves on the ground surface for the model of an alluvial valley with I = 0.3, DR = 1.0 and 
incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.
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previous section, the angles of incidence waves ðθÞ are considered as 0� , 30� , 60� , and 90� and the 
factor of DR is 0.5 to 2.0. Based on the responses, when the angle of incidence waves is equal to 0� , all 
the results are symmetric. It is clear that the vibrations of diagrams change in the presence of an 
alluvial valley and higher amplifications are achieved in its location. In fact, due to the softer content of 

Figure 18. The amplitude of scattered waves on the ground surface for the model of an alluvial valley with I = 0.3, DR = 1.5 and 
incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.

Figure 19. The amplitude of scattered waves on the ground surface for the model of an alluvial valley with I = 0.3, DR = 2.0 and 
incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.
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Figure 20. 3D amplification of the ground surface versus different dimensionless frequencies for the model of an alluvial valley 
subjected to SH-waves with I = 0.3, DR = 0.5 and the incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.

Figure 21. 3D amplification of the ground surface versus different dimensionless frequencies for the model of an alluvial valley 
subjected to SH-waves with I = 0.3, DR = 1.0 and the incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.
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alluvium compared to the surrounding medium, applying seismic waves to the model increases the 
amplitudes of displacements on the ground surface. Therefore, the amount of amplifications in the 
location of alluvial valley will be much higher than the surrounding zones. Based on these explana-
tions, when DR is equal to 0.5, amplifications appear as separated vibrations on the 3D diagram. This 
form of responses is because of the intermittent reflections of the waves inside the small medium of 
alluvium. When I=0.3, the soft content of alluvium causes the waves to be trapped inside the alluvium. 
In this position, because of the higher stiffness of the outside medium compared to alluvium, the 
boundary of the valley acts like a reflective surface and does not allow the waves to quickly leave the 
alluvium. This effect provides the condition of multiple reflections. Thus, when these reflected waves 
collide each other, hit the valley’s boundary or hit the ground surface, the final result will appear as 
a vibration on the diagram. By reducing DR, the reflections should occur in shorter paths. Thus, the 
complexity of the results will be increased by the same amount.

By inclining the waves front to 30� , the symmetry of results is eliminated. Comparing the results of 
θ ¼0� and θ ¼ 30� for DR = 0.5 reveals that the differences are few, but unlike the case of θ ¼0� , the 
vibrations and amplification paths in the diagram of θ ¼ 30� slightly follow each other. This effect is much 
stronger for the cases of θ ¼ 60�and θ ¼ 90� indicating that by the inclination of the wave front to reach 
the horizon, the incidence waves move on longer paths. Therefore, the amplifications become higher and 
the amount of intermittent reflections inside the alluvium becomes lower. Also, by applying the wave front 
in the horizontal angle, the effect of shadow zone becomes stronger because of more attenuations of the 
waves during their passage from the inside of the alluvium. For the cases of DR = 1.0, the paths of 
amplifications are fully harmonious and uniform which is because of the regular shape of valley. It is 
evident that the highest amplifications occur in the case of DR = 1.0 and θ ¼ 90� with a value of about 8 
times compared to the free-field. Furthermore, the phenomenon of shadow zone is quite clear in this case. 

Figure 22. 3D amplification of the ground surface versus different dimensionless frequencies for the model of an alluvial valley 
subjected to SH-waves with I = 0.3, DR = 1.5 and the incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.

20 M. PANJI AND S. MOJTABAZADEH-HASANLOUEI



When DR = 1.5 and θ ¼0� , maximum amplifications occur in the middle of the alluvium. In fact, due to 
the specific shape of the alluvial valley, the collisions of waves occur in a single path in the middle of the 
alluvium, leading to higher amplifications in the middle of the valley. Nevertheless, in the case of DR = 2.0, 
multiple paths are emerged. On the other hand, by comparing the results of lower DR values with DR = 2.0 
and for the incidence angle of θ ¼ 90� , it is understood that when the depth ratio of the alluvial valley is 
higher than 1.5, a massive volume of waves can enter the medium of alluvium. Therefore, the content of 
alluvium cannot attenuate the waves and the effect of the shadow zone will be much weaker than lower DR 
values. Moreover, increasing the DR value beyond 1.0 cannot increase maximum amplifications.

9. Conclusions

The response of the ground surface in the presence of an alluvial valley was presented in time and 
frequency domains. The model was placed in a linear elastic half-plane subjected to incident out-of-plane 
SH-waves. Modeling was performed by developing a predefined approach known as half-plane time- 
domain BEM for an alluvial valley site. One of the abilities of the proposed method was to concentrate 
the meshes only around the interface. By applying this method to each part of the model, including valley 
and alluvium, and assembling their formulations, the influence coefficients of the matrices were obtained. 
Therefore, the boundary values of displacement fields could be determined. After presenting the 
formulation, a verification example was explored for a semi-circular alluvial valley and the results were 
compared with those presented in the technical literature. The results illustrated the acceptable perfor-
mance of the introduced method and its high accuracy for the seismic analysis of intricate engineering 
problems. Next, an advanced numerical study was conducted to demonstrate the ground surface 

Figure 23. 3D amplification of the ground surface versus different dimensionless frequencies for the model of an alluvial valley 
subjected to SH-waves with I = 0.3, DR = 2.0 and the incident angle of (a)θ ¼ 0

�

, (b)θ ¼ 30
�

, (c)θ ¼ 60
�

and (d)θ ¼ 90
�

.
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responses in the presence of a semi-cylindrical alluvial valley with different impedances and depth ratios 
as synthetic seismograms under obliquely incident SH-waves. In the final section, the amplification 
patterns were illustrated for the impedance ratio of 0.3 and various depth ratios as 3D diagrams in the 
frequency-domain. The most important results of this study can be summarized as follows:

(a) The lower impedance ratio leads to more flexible behavior of the alluvium and a higher volume 
of trapped waves. Thus, more displacements occur on the ground surface and the waves leave the 
alluvium more slowly. For I=0.1 and oblique wave front, the highest amplitudes emerge in the paths of 
waves parallel to the wave front and follow the same entrance paths into the alluvium. This effect is 
much clearer when the angle of incidence waves is closer to the horizon.

(b) When the stiffness of alluvium is very low, the alluvium acts like a barrier to oblique incidence 
waves and reduces the amplitudes of the motions on the opposite side of the wave front. This effect, 
however, is weaker for higher impedance ratios.

(c) For I=0.5, the responses of the ground surface are similar to the free-field motions. Thus, the 
volume of complexity and amplitudes decreases, the required convergence time of the results is reduced.

(d) Most vibrations are achieved in the results of DR = 0.5 because of the small limited medium of 
alluvium and intermittent reflections of the waves. In addition, for DR = 1.0, the regular form of the 
valley assists the waves in creating the uniform paths of the trapped waves and the highest amplitudes 
appear in the middle of the alluvium. By increasing the depth ratio of the valley, the complexity of the 
result is decreased, but the amplitudes are increased. Moreover, the highest amplifications occur in the 
case of DR = 1.0 and θ ¼ 90� with the value of about 8 times compared to free-field. In fact, by 
inclining the wave front to reach the horizon, amplifications become higher and the amount of 
intermittent reflections inside the alluvium becomes lower. When the angle of wave front is 
θ ¼ 90� , the effect of the shadow zone becomes stronger because of the higher attenuations of the 
waves during their passage from inside the alluvium.

(e) When DR = 1.5 and θ ¼0� , the maximum amplifications occur in the middle of the alluvium. 
Nevertheless, in the case of DR = 2.0, multiple paths emerge. When the depth ratio of the alluvial valley 
is higher than 1.5, a massive volume of waves is able to enter the alluvium. However, the alluvium 
cannot diminish the waves and the effect of the shadow zone is much weaker than the lower DR values. 
Moreover, increasing the DR value after 1.0 cannot increase maximum amplifications.

Note

1. Dynamic Analysis of Structures by the Boundary Element Method.
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