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ABSTRACT
In this paper, a homogeneous linear elastic half-plane model clut-
tered with multiple embedded arbitrarily-shaped inclusions is pre-
sented. The model was built based on the time-domain boundary
element method established via the half-space Green’s functions,
subjected to propagating obliquely incident SH-waves. Using this
method, the discretization was performed only on the interfaces.
The full-contact posture was assumed between the inclusions and
the surrounding domain. First, the problem was disintegrated into
two parts including a multi-pitted half-plane and a system of ran-
domly shaped closed filled solids. Then, by applying the method to
each part, the influence coefficients of the matrices were obtained.
Finally, to forma coupledequation for determiningunknownbound-
ary values in each time-step, the boundary/continuity conditions
were satisfied on the interfaces. By implementing the method in
an advanced developed algorithm, its efficiency was investigated
by comparing the responses with those of the published works. To
complete the obtained results, the synthetic seismograms and three-
dimensional amplification patterns of the surface were presented.
Also, some snapshots were illustrated to reveal the dispersion of the
waves. The proposedmethod is a powerful tool formodeling various
structures at the nano-scale and can be recommended to engineers
for transient analysis of composite materials.

ARTICLE HISTORY
Received 28 February 2020
Accepted 13 October 2020

KEYWORDS
Half-plane BEM; synthetic
seismogram; multiple
inclusions; SH-wave;
time-domain

CONTACT Mehdi Panji m.panji@iauz.ac.ir

© 2020 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/17455030.2020.1842553&domain=pdf&date_stamp=2020-11-12
http://orcid.org/0000-0001-8508-4837
http://orcid.org/0000-0002-3240-7775
http://orcid.org/0000-0001-5523-3520
mailto:m.panji@iauz.ac.ir


2 S. MOJTABAZADEH-HASANLOUEI ET AL.

1. Introduction

In the last decades, recognition of seismic ground motions and damage investigations in
the presence of subsurface heterogeneities during an earthquake has been among the
most important concerns of seismologists. This issue is more significant for subsurface
inclusions because of their dissimilarmaterials to the surroundingmedium. This feature can
change the initial nature of incidence waves by diffraction, reflection, crawling, diversion,
and trapping, leading to amplification/de-amplification on different zones of the surface.
Therefore, evaluation of various effective factors such as geometry and type of features, site
conditions, type of incident waves, and paths of wave motion requires using appropriate
approaches for their analysis and detailed understanding. Utilizing these methods allows
modeling and analyzing the problems of wave scattering and predicting the real responses
in seismic mode. Technically, researchers have proposed various approaches for seismic
analysis. Overall, these methods can be divided into analytical, semi-analytical, experimen-
tal, and numerical methods [1]. In the use of analytical and semi-analytical approaches
for inclusion problems, the pioneering studies were done in the late 1970s. For instance,
Simons [2] addressed the scattering of SH-waves by semi-infinite inclusions using an expo-
nential expansion method. Kikuchi [3, 4] developed the model of uniformly distributed
inclusions using the wave function expansion method. Later, Coussy [5] presented a study
about the scattering of elastic P and SV-waves by inclusion with an interface crack and
extracted the closed-form solution for this problem. The scattering of elastic SH-waves in
the presence of a rigid cylindrical inclusion was studied by Wang & Wang [6]. In the fol-
lowing years, using the wave function expansion method, Zhao & Qi [7] investigated the
scattering of plane SH-wave in the presence of a shallow cylindrical elastic inclusion. A
year after, based on the multiple wave propagation theory, Conoir & Norris [8] modeled
and analyzed an elastic medium containing random configurations of cylindrical scatter-
ers. Using the multipole method, Lee & Chen [9] analytically solved the scattering of the
flexural wave by multiple circular inclusions in an infinite thin plate. Recently, Qi et al. [10]
utilized wave function expansion method to study the dynamic response of a plate with
multiple inclusions subjected to SH-waves. Despite the high accuracy of analytical meth-
ods, their lack of flexibility in modeling and analysis of complex and multiple features has
forced the researchers to use alternative approaches such as numerical methods.

In recent years, increasing the power and capacity of computers and their advanced
components has facilitated solving complex engineering problems using numerical meth-
ods [11]. When using numerical methods, one can never claim that the obtained results
are completely exact; rather, the main purpose is to move toward accurate responses as
close as possible. The numerical methods are divided into two general categories known
as the domain and boundary methods. The common domain methods include the finite
element method (FEM) and finite difference method (FDM). Among the pioneering stud-
ies on FEM are those of Lysmer & Drake [12], Smith [13], Day [14] and Kawase & Sato
[15], who highlighted the application of this approach for analysis of wave propagation
problems in seismology. Zhang & Katsube [16] presented a hybrid FEM for the analysis of
heterogeneous materials with randomly-dispersed elastic inclusions. Using a FEM-based
numerical equivalent inclusion method, Nakasone et al. [17] analyzed the stress fields in
and around the various shapes of inclusions. In the use of FDM, Boore [18], Ohtsuki &
Harumi [19] and Moczo & Bard [20] are the pioneering researchers who studied the effects
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of topography and subsurface inhomogeneities on the wave diffraction and amplification
of the surface subjected to seismic SH- and SV-waves. The boundarymethods are separated
into two categories including full-plane and half-plane, each being developed in trans-
formed (frequency andLaplace) and timedomains aswell [21]. Using theboundary element
method (BEM), one dimension of the models is reduced and the radiation conditions of
waves at infinity are satisfied. The advantages of using BEM compared to the domain
approaches include concentration of meshes only around the boundary of desired topo-
graphic features (the target society of this study includes subsurface inclusions), automatic
satisfaction of wave radiation conditions in far boundaries, lower volume of input data,
lower memory seizure, significant reduction in analysis time, and extremely high accuracy
of exported results because of the large contribution of analytical processes in solving
problems [22].

In full-plane BEM, the model should be truncated from a full-space and the bound-
aries should be closed in a distance far away from the desired zone. This leads to the
approximate satisfaction of stress-free conditions on the ground surface [23]. Panji et al.
[24] and Panji et al. [25] used the static full-plane BEM to evaluate the effective parame-
ters on the stability of underground tunnels. Using dynamic full-plane BEM, Hadley [26]
studied the wave propagation by inclusions embedded in a nonhomogeneous elastic half-
space. Using a 2D hybrid FE/BE method, Kamalian et al. [27] presented the site response
analysis of non-homogeneous features in time-domain. Parvanova et al. [28] investigated
the dynamic responses of a medium with multiple inclusions under anti-plane strain con-
ditions. Later, Parvanova et al. [29] focused on the wave scattering in the presence of
nano-heterogeneities embedded in an elastic matrix. In another study by BE/FE method,
Parvanova et al. [30] focused on the dynamic analysis of nano-heterogeneities located in a
finite-sizedmedium. In the half-plane BEM approach, the stress-free boundary condition of
the ground surface is satisfying in an exact process. Despite difficult implementation and
creating bulky equations in the half-plane BEM compared to the full-plane BEM, there is no
need to discretize the smooth surface and define fictitious elements for enclosing bound-
aries. These advantages help tomake themodels simpler. Using static half-plane BEM, Panji
et al. [31] and Panji & Ansari [32] analyzed shallow tunnels and pressure pipes embedded
in layered soils, respectively. In a dynamic study by half-plane BEM, Dong et al. [33] studied
the seismic behavior of subsurface features such as pipes and inclusions.

Among the pioneering studies by transformed-domain BEM is thework of Dravinski [34],
who determined the groundmotion amplification due to elastic inclusion located in a half-
space. Then,Niwa&Hirose [35] presented theapplicationof theboundary integral equation
(BIE)method for transient analysis of inclusions in half-space. Next, Hadley et al. [36] studied
the scattering of seismic waves due to inclusions in a nonhomogeneous elastic half-space.
Using an indirect BIE approach, Benites et al. [37, 38] and Yomogida et al. [39] investigated
antiplane/plane strain elastic wave scattering for a system of multiple cavities. The models
were presented in full space and half-space subjected to the plane SH, P, and SV-waves.
Yao et al. [40] simulated the 2D behavior of randomly distributed inclusions as a com-
posite materials problem. Rus & Gallego [41] presented a boundary integral equation for
sensitivity analysis of inclusion and cavity features in the harmonic elastodynamicmedium.
Mogilevskaya et al. [42] studied the multiple interacting of circular nano-inhomogeneities.
Based on the double-layer potentials, Chen et al. [43] presented a meshless method for
antiplane shear problems with multiple inclusions. The scattering of plane harmonic SH, P,
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SV, and Rayleigh-waves by a completely embedded corrugated elastic inclusion was pre-
sented by Yu & Dravinski [44, 45] investigated the scattering of plane harmonic SH-waves
in the presence of multiple subsurface inclusions. Using the BIE method, Parvanova et al.
[46] investigated the scattering of seismic waves by nano-heterogeneities embedded in an
elastic matrix. In the same year, the scattering of a plane harmonic SH-wave by a rough
multilayered inclusion of arbitrary shape was obtained by Dravinski & Sheikhhassani [47].
The effect of position and shape of inclusions in a conductor domain was addressed by
Peters & Barra [48]. In the studies of Lee & Chen [49] and Chen et al. [50], a null-field BIE
method presented for analyzing the antiplane problems with elliptical inclusions to obtain
the scattering of the SH-wave. Sheikhhassani & Dravinski [51] studied the scattering of a
plane harmonic SH-wave and by multiple multilayered inclusions located in an elastic half-
space subjected to SH-waves. In another study, Sheikhhassani & Dravinski [52] focused on
the dynamic stress concentration by multiple multilayered inclusions. Utilizing multido-
main IBEM, Ba & Yin [53] studied the wave scattering by inclusions in a layered half-space.
Recently, Jobin et al. [54] evaluated the interactionbetween inclusions using strain intensity
factors.

One of the studies by time-domain BEM (TD-BEM) is the one conducted by Feng et al.
[55], who presented the 2D scattering of SH-waves by inclusion with a unilateral frictional
interface. Kamalian et al. [56] obtained the 2D site responseof topographic structures. Then,
Mykhaskiv [57] presented the transient response of a plane rigid inclusion subjected to the
incidentwave. Huang et al. [58] suggested a time-domain direct boundary integralmethod
for a viscoelastic plane with circular holes and elastic inclusions. In the following years, Lei
et al. [59] analyzed the dynamic crack propagation in a matrix containing inclusions. Panji
et al. [22] studied the transient analysis of wave propagation problems. Panji & Ansari [60]
presented the SH-wave scattering by the lined tunnels located in an elastic half-plane. Panji
& Mojtabazadeh-Hasanlouei [61, 62] analyzed the seismic behavior of twin and multiple
subsurface cavities and obtained the wave propagation and amplification patterns on the
surface. Huang et al. [63] presented the scattering of plane P and SV-waves by twin lining
tunnels with imperfect interfaces embedded in an elastic half-space. In one of the most
recent studies, Panji et al. [64] investigated the SH-wave dispersion by a single circular and
elliptical inclusion and presented time and frequency-domain responses. In another study,
Panji &Mojtabazadeh-Hasanlouei [65] presented the transient response of irregular surface
by periodically distributed semi-sine shaped valleys subjected to SH-waves.

In most previous studies, themodels are limited to homogeneous singlematerials. Also,
the time-domain responses for transient analysis of non-homogeneous solids have been
obtained by the inverse Fourier/Laplace-transform algorithm from the angle of mechani-
cal problems. In the present study, the multiple scattering of transient SH-waves due to an
unlimited number of subsurface inclusions is directly analyzed in the time-domain. For this
purpose, step-by-step transient analysis of arbitrarily shaped subsurface inclusions is pre-
sented subjected to propagating obliquely incident plane SH-waves. Themodels aremade
up of two separate parts including a multi-pitted half-plane and a system of many alluvial
media that are assembled on each other. After implementing the proposed method in the
general DASBEM algorithm [22], its validity was evaluated by analyzing several practical
examples. Then, as a numerical scheme, the synthetic seismograms and three-dimensional
(3D) amplification patterns of the surface were presented for circular/elliptical multiple
inclusions. The main objective of the paper is to present the ability and efficiency of the
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method in preparation of simple seismic heterogeneous models with different behav-
ior of materials. Moreover, obtaining high accuracy responses, achieving optimal analysis
time using a limited number of input data and memory seizure, and combining numerical
approaches in a simple way are the most important goals of this study.

2. Problem statement

As shown in Figure 1, a system of arbitrarily shaped infinite inclusions is embedded in a
linear elastic homogeneous and isotropic half-plane. In this figure, � is the domain and
� is the boundary of the body, which are defined separately for the pitted domain and
the closed filled solids; b is the radius; DR is the depth ratio of inclusions; θ is the angle
of the incident waves; and n is the normal vector that is perpendicular to the surface and
dependent to the node numbering direction. Themodels are subjected to the incident out-
of-plane SH-waves of the Ricker type [66]. The function of a Ricker wavelet is defined as
Equation (1):

f (t) = [1 − 2(π fp(t − t0))
2]e−(π fp(t−t0))

2
, (1)

where fp is the predominant frequency of the wave and t0 is the time-shifting parameter.
Since the modeling is conducted in half-plane and the stress-free boundary conditions are
satisfied on the ground surface, free-field displacement (uff ) can be obtained by adding the
phase of the incident and reflected waves as follows [67]:

uff (x, y, t) = αmax ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[
1 − 2

(
π fp
c0

αinc.
)2
]
e
−
(
π fp
c0

αinc.

)2

H

(
t − rinc.

c0

)
+

[
1 − 2

(
π fp
c0

αref .
)2
]
e
−
(
π fp
c0

αref .

)2

H

(
t − rref .

c0

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (2)

where αinc., αref ., rinc., and rref . are obtained from Equations (3) and (4):

αinc. = c(t − t0) + rinc., rinc. = − sin(θ) · x + cos(θ) · y, (3)

αref . = c(t − t0) + rref ., rref . = − sin(θ) · x − cos(θ) · y, (4)

To initiate the formulation procedure, the equation of motion for the anti-plane strain
model should be utilized as Equation (5):

∂2u(x, y, t)
∂x2

+ ∂2u(x, y, t)
∂y2

+ b(x, y, t) = 1

c2j

∂2u(x, y, t)
∂t2

, j = 0, 1, 2, · · · , n (5)

where u(x, y, t) is out-of-plane displacement and b(x, y, t) is out-of-plane body force at the
point (x, y) for the current time of t. The shear-wave velocity of the jth medium is defined
by cj and determined by

√
μj/ρj, where μj is the shear modulus and ρj is the mass density.

By solving Equation (5) based on the boundary conditions presented in Equation (6), a 2D
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Figure 1. Theproblemgeometry of arbitrarily shapedmultiple subsurface inclusionsplaced in anelastic
half-plane subjected to the incident SH-waves.

anti-plane semi-infinite medium can be obtained as well.

∂u(x, y, t)
∂n

∣∣∣∣
y=0

= 0, (6)

Moreover, the half-space Green’s functions can be achieved by simultaneously taking
the singular solution into account for Equations (5) and (6) [22].

3. Half-plane TD-BEM

Using the wave source image technique and satisfying the stress-free boundary conditions
on the surface, one can concentrate meshes exclusively around the boundary of inclu-
sions. This procedure significantly simplifies the problem and helps to decrease the volume
of input data and time of analysis [22]. The details of this method are mentioned in the
following section.

3.1. Boundary integral equation (BIE)

The first step is applying the weighted residual integral on Equation (5) without consider-
ing the boundary conditions presented in Equation (6). Then, by twice integration, utilizing
boundary methods for eliminating the volumetric integral defined on the domain and
ignoring the contributions of the initial conditions and body forces, the direct BIE can be
obtained in the time-domain as Equation (7) [68]:

c(ξ)u(ξ , t) =
∫

�0∪�1∪···∪�n

{∫ t

0
[u∗(x, t; ξ , τ) · qj(x, t) − q∗(x, t; ξ , τ) · uj(x, t)]dτ

}
d�(x), j

= 0, 1, 2, · · · , n (7)

In Equation (7), u∗ and q∗ are the half-space displacement and traction Green’s functions
of the time-domain, respectively; uj and qj are represent the displacements and traction
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fields on the boundary, respectively; x and ξ are the coordinates of source and receiver,
respectively; and � denotes the boundary. The Riemann-convolution integrals are shown
by u∗ · qj and q∗ · uj. The angle of boundary refraction is defined by c(ξ), which is named as
the geometry coefficient aswell [69]. By inserting the free-field displacement on the surface
of the half-plane with no subsurface irregularities, the BIE (7) can be rewritten as BIE (8) for
the total displacement [36, 70].

c(ξ)u(ξ , t) =
∫

�0∪�1∪···∪�n

{∫ t

0
[u∗(x, t; ξ , τ) · qj(x, t) − q∗(x, t; ξ , τ) · uj(x, t)]dτ

}
d�(x)

+ uff0 (ξ , t), j = 0, 1, 2, · · · , n (8)

The free-field displacement on a surface without the presence of any irregularities is
defined by uff0 . In this step, the total displacement in the presence of subsurface inclusions
can be obtained by solving Equation (8) and it is possible to calculate displacements at any
pointm in�, including the ground surface (y = 0). To use the followingmodified equation
for internal points, cm(ξ) should be equal to 1.0 as the following equation:

um(ξ , t) =
∫

�0∪�1∪···∪�n

{∫ t

0
[u∗m(x, t; ξ , τ) · qj(x, t) − q∗m(x, t; ξ , τ) · uj(x, t)]dτ

}
d�(x)

+ uff .m0 (ξ , t), j = 0, 1, 2, · · · , n (9)

where the half-space displacement and traction Green’s functions for each internal point
are represented by u∗m and q∗m, respectively. Additionally, uff .m is the free-field displace-
ments that should be recalculated in this step.

4. Numerical implementation

In this step, before solving Equation (8) and obtaining field variables, the geometric bound-
ary of the body should be discretized and the time-axis should be considered. Equation (8)
is an exact solution until reaching this step and there is no approximation in this equation
before applying discretization on the boundaries of the multi-pitted medium and closed
filled solids. To carry out temporal integration, an analytical process should be performed
by a numerical procedure to achieve spatial integration. This process is presented in the
following sections.

4.1. Temporal integration

When t = N�t, the time interval will be divided into N equal increments by considering�t
from 0 to t. The field variables can be assumed to remain linearly within each time-step.
Therefore, by applying temporal integrations, the time-convoluted BIE can be rewritten as
Equation (10).

c(ξ)uN(ξ) =
N∑

n=1

∫
�0∪�1∪···∪�n

(
[UN−n+1

1 (x, ξ)qnj (x) + UN−n
2 (x, ξ)qnj (x)]

−[QN−n+1
1 (x, ξ)unj (x) + QN−n

2 (x, ξ)unj (x)]

)
d�(x)

+ uff .N0 (ξ), j = 0, 1, 2, · · · , n (10)
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whereUN−n+1
1 andUN−n

2 are the compact form of half-plane displacement time-convoluted
kernels and QN−n+1

1 and QN−n
2 are the half-plane traction time-convoluted kernels. These

kernels are shortened in the closed-form and correspond to the forward and backward
time-nodes within a time-step. In Equation (10), uN is the boundary displacement and uff .N

is the free-field displacement at the time t = N�t. Moreover, the displacement and trac-
tion of boundary nodes are denoted by unj and qnj , respectively. The full form of the kernels
half-plane displacement and traction is presented in Panji et al. [22].

4.2. Spatial integration

To discretize the boundary of the domain for performing the spatial integration in numeri-
cal form, the isoparametric quadratic elements are utilized and all the related quantities to
the geometry and field variables are given in terms of nodal variables. Thus, by considering
the spatial discretization, the reformed shape of Equation (10) can be as Equation (11):

c(ξ)uN(ξ) =
N∑

n=1

M∑
m=1

⎡
⎢⎢⎣
∫

�0∪�1∪...∪�n

[UN−n+1
1 (x(κ), ξ) + UN−n

2 (x(κ), ξ)]Nα(κ)|J|dκqnα−∫
�0∪�1∪...∪�n

[QN−n+1
1 (x(κ), ξ) + QN−n

2 (x(κ), ξ)]Nα(κ)|J|dκunα

⎤
⎥⎥⎦

(11)
where the closed-form of scalar half-plane displacement and traction kernels are shown
by UN−n+1

1 + UN−n
2 andQN−n+1

1 + QN−n
2 , respectively; uff .Nand uN present free-field motion

and displacement field in time stepN, respectively; un and qn are displacement and traction
vectors, respectively; Na(κ) is the quadratic shape functions, where κ is the local intrin-
sic coordinates of the elements. M denotes the boundary elements for each inclusion; �m

denotes the portion of boundary to the element m; and J is the Jacobian of transformation
[69].

4.3. Time-stepping algorithm

After discretizing the geometry boundary of the problem by three-node quadratic ele-
ments and forming the spatial integration of Equation (11) for all BEs, the matrix form of
this equation can be derived as follows:

N∑
n=1

HN−n+1
j {unj } =

N∑
n=1

GN−n+1
j {qnj } + {uff .N0 }, j = 0, 1, 2, · · · , n (12)

where the elements of HN−n+1
j and GN−n+1

j matrices can be obtained by integration over
the boundary elements. {unj } and {qnj } are the vectors of boundary nodal quantities at the
time-step n. By applying the boundary conditions on the geometric boundaries of the
model, the solvable form of Equation (12) can be achieved as follows:

[Aj11]{XNj } = [Bj11]{YNj } + {RNj } + {uff .N0 }, j = 0, 1, 2, · · · , n (13)

where {XNj } and {YNj } are the vectors including unknown and known boundary variables,
respectively. The effects of past dynamic-history on the current time-node N is applied in
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{RNj }. The equation for calculating {RNj } is as follows:

{RNj } =
N−1∑
n=1

(GN−n+1{qn} − HN−n+1{un}), j = 0, 1, 2, · · · , n (14)

After solving Equation (13), all boundary unknowns at each time-step and displacements
at the internal point ‘m’ placed into the domain will be available.

5. Modeling

Based on the sub-structuring process, the subsurface inclusions are divided into two sep-
arate parts including a multi-pitted half-plane and a system of multiple closed filled solids.
Figure 1 shows a schematic shape of this procedure. Themodeling details are presented in
the following sections.

5.1. Part I: multiple pitted half-plane

The first part includes a semi-infinite media with multiple hollow cavities subjected to
the seismic SH-waves. If the interface nodes of the cavities connected to the surrounding
domain are identified by the subscript of 0j, the discretized BIE at the time step N can be
written as follows:

H1
0ju

N
0j = G1

0jq
N
0j + RN0j + uff .N0j , j = 1, 2, · · · , n (15)

where uN0j and qN0j are displacement and traction fields of the interface, respectively; RN0j is
the past dynamic time-history of the interface in step N that is defined using Equation (16);
and uff .N0j is the free-field motion of interface nodes.

RN0j =
N−1∑
n=1

(GN−n+1
0j qn0j − HN−n+1

0j un0j), j = 1, 2, · · · , n (16)

5.2. Part II: multiple closed filled solids

The second part includes a system of multiple closed alluvial solids as the filler materials of
inclusions. If the interface nodes are identified by the subscript of j0, the discretized BIE at
the time step N can be written as follows:

H2
j0u

N
j0 = G2

j0q
N
j0 + RNj0, j = 1, 2, · · · , n (17)

where, uNj0 and q
N
j0 are displacement and traction fields of the interface, respectively, and RNj0

is the past dynamic time-history of the interface in step N, which is defined using Equation
(18).

RNj0 =
N−1∑
n=1

(GN−n+1
j0 qnj0 − HN−n+1

j0 unj0), j = 1, 2, · · · , n (18)
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5.3. Assembling

To solve the problem and determining unknown variables of interfaces, the needed equi-
librium conditions of displacement and traction compatibility on the interfaces are as
follows:

uN0j = uNj0, j = 1, 2, · · · , n (19)

also

μ0q
N
0j = −μjq

N
j0, j = 1, 2, · · · , n (20)

In these equations, μ0 and μj are the shear modulus of the surrounding medium
and multiple inclusions, respectively. After satisfying the mentioned conditions on inter-
faces, the final matrix form of the assembled BIEs will be as Equation (21). By solving this
equation, all unknown variables of the interfaces, such as displacements and tractions can
be obtained. By applying c(ξ) = 1.0 in the equations of the first part, the displacements of
the ground surface can be calculated.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H1
01

−1/μ0
G1
01 H1

02
−1/μ0

G1
02 · · · H1

0n
−1/μ0

G1
0n

H1
10

−1/μ1
G1
10 0 0 · · · 0 0

0 0 H1
20

−1/μ2
G1
20 · · · 0 0

...
...

...
...

. . .
...

...
0 0 0 0 · · · H1

n0
−1/μn

G1
0n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uN01
qN01
uN02
qN02
...

uN0n
qN0n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

RN0j
RN10
RN20
...

RNn0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uff .N0j
0
0
...
0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
, j = 1, 2, . . . , n (21)

6. The DASBEM program

DynamicAnalysis of Structures by Boundary ElementMethod (DASBEM) is a programbased
on the half-plane BEM prepared for the dynamic analysis of plane scalar time-domain
problems. This program is developed for seismic analysis of 2D multiple subsurface circu-
lar/elliptical inclusions located in an elastic half-plane. The flowchart and the details of this
program are presented in Panji et al. [64].

7. Application examples

By implementing theabove formulation in theDASBEMalgorithm, somepractical examples
are solved to examine the validity and efficiency of the proposed program. In the follow-
ing sections, the Normalized Displacement Amplitude (NDA) is defined as the ratio of the
Fourier amplitude of the total ground surface motion obtained by BEM for a defined fre-
quency to the Fourier amplitude of the incident motion for the defined frequency. The
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dimensionless frequency (η) is as (η = ωb/πc), where ω is the angular frequency of the
wave, b is the radius of inclusions, and c is the shear-wave velocity. The impedance ratio
(I), as the stiffness ratio of inclusions material to the surrounding medium, is defined as
(I = ρici/ρmcm), where ρi and ci are the mass density and shear-wave velocity of inclu-
sions, respectively, and ρm and cm arementioned parameters for the surroundingmedium,
respectively. Moreover, the amplification is the ratio of the surface response amplitude to
free-field motion. The numerical procedure is implemented in the MATLAB [71] program-
ming software.

To study thebehavior ofmultiple underground inclusions located in an elastic half-plane
subjected to the seismic SH-waves, some key parameters such as the number of inclusions,
angle of incident waves, and the shape of inclusions are considered in the numerical study.
The number of inclusions is between 2 and 16. Also, the angles (θ) of 0°, 30°, 60°, and 90°
are applied for incidence waves. The impedance ratio (I) is equal to 0.333 and the shape
of inclusions is defined in circular and elliptical mode with SR = 0.5. First, to illustrate the
propagation and diffraction of the incident waves on the ground surface, the responses of
time-domain are presented. Then, by showing the 3D frequency-domain results, the gen-
eral pattern of amplification and displacements of the ground surface are demonstrated. In
the last part, the propagation of incidence waves below the ground surface is illustrated by
some snapshots for specific cases at different times.

7.1. Verification study

To compare the obtained responses with the solutions presented by other researchers,
some examples are considered in the following. The verification examples are prepared
based on the models of two and nine circular subsurface inclusions subjected to ver-
tical and horizontal incidence waves angle. The details are described in the following
subsections.

7.1.1. Twin circular inclusions
As depicted in Figure 2, twin circular inclusions are modeled in the depth of 2b sub-
jected to incident SH-waves and the obtained responses are compared with those pre-
sented by Dravinski & Yu [72]. These researchers applied the direct full-plane frequency-
domain BIE approach to show the ground surface displacements. The dimensionless
frequency (η) of 0.5 and the impedance ratio (I) of 0.333 and the vertical (0°) and hor-
izontal (90°) incident waves are applied in the model. The range of ground surface is
between −10b and 10b and the length ratio (LR) between the center of inclusions is
equal to 6. The shear-wave velocity (cj) and the mass density (ρj) of 600 m.s - 1 and
0.667 ton.m - 3 for the inclusions and 1200 m.s - 1 and 1.0 ton.m - 3 are considered for the
surrounding medium, respectively. Additionally, the predominant frequency and max-
imum amplitude of the SH-waves of the Ricker wavelet type are equal to 3Hz and
0.001m, respectively. The problems are solved by 500 time-steps with �t of 0.012 sec
and the time-shifting parameter of 1.5 sec. The number of boundary elements consid-
ered for each circular inclusion is 94 elements. As shown in Figure 2, the obtained results
of the present study for the model of twin inclusions and the solutions presented by
Dravinski & Yu [72] illustrate a good agreement such that the diagrams are completely
coincident.
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Figure 2. The normalized displacement amplitude of the ground surface versus x/b for the model of
twin circular inclusions subjected to the SH-waves. The dimensionless frequency of η = 0.5 for the
incident angle of (a) θ = 0◦ and (b) θ = 90◦.

7.1.2. Nine circular inclusions
Figure 3presents theobtained results of thepresent study for nine subsurface circular inclu-
sions compared to the solutions presentedbyDravinski & Yu [72]. The rows of inclusions are
located in the depth ratios (DR) of 2, 5 and 8 subjected to the incident angles of (θ ) of 0° and
90°. The other effective parameters are considered similar to those of the previous exam-
ple. Comparing the diagrams shows a good agreement and demonstrates the appropriate
ability and high accuracy of the proposed program for modeling and analysis of complex
subsurface filled underground features.
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Figure 3. The normalized displacement amplitude of the ground surface versus x/b for the model of
nine circular inclusions subjected to the SH-waves. The dimensionless frequency of η = 0.5 for the
incident angle of (a) θ = 0◦ and (b) θ = 90◦.

7.2. Time-domain responses

Figures 4–7 illustrate the general pattern of responses in time-domain and demonstrate
the scattering of the SH-waves in the presence of a system of multiple circular inclusions.
For a better interpretation of the results, four types of stations are marked on the figures
by the signs D, R, C, and Rt to separate the different phases of scattered waves. The direct
paths of waves that move to the surface are shown by D. After the collision of the waves
to the boundary of inclusions, a significant part of the waves is reflected directly, which is
indicated by R sign. The other phase, which is related to creeper waves, is marked by C sign.
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Figure 4. Synthetic seismograms of the ground surface and the procedure of the SH-waves dispersion
with time, for the model of twin circular inclusions and the incident angle of (a) θ = 0◦, (b) θ = 30◦, (c)
θ = 60◦ and (d) θ = 90◦.
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Figure 5. Synthetic seismograms of the ground surface and the procedure of the SH-waves dispersion
with time, for the model of four circular inclusions in two row and the incident angle of (a) θ = 0◦, (b)
θ = 30◦, (c) θ = 60◦ and (d) θ = 90◦.
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Figure 6. Synthetic seismograms of the ground surface and the procedure of the SH-waves dispersion
with time, for themodel of eight circular inclusions and the incident angle of (a) θ = 0◦, (b) θ = 30◦, (c)
θ = 60◦ and (d) θ = 90◦.
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Figure 7. Synthetic seismograms of the ground surface and the procedure of the SH-waves dispersion
with time, for the model of 16 circular inclusions and the incident angle of (a) θ = 0◦, (b) θ = 30◦, (c)
θ = 60◦ and (d) θ = 90◦.
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Thesewaves are crawling on the boundary of inclusions and then reflected after hitting the
surface. Based on the considered impedance ratio (I = 0.333), the stiffness of inclusions
materials is 66.7% softer than the surrounding medium. Because of the weaker material of
inclusions compared to the main domain, most parts of incident waves are trapped inside
the inclusions. Also, the boundary of inclusions acts like a mirror and does not allow the
trappedwaves to leave themediumquickly. Additionally, some remainingparts of reflected
and crawler waves in the domain are trapped, and consecutively reflected between the
inclusions and ground surface. The mentioned phases are marked by Rt [73]. The number
of subscripts is shown the related phases to each of the inclusions.

Figure 4 shows the time history responses of twin circular inclusions. As can be seen,
when θ = 0° (Figure 4(a)), the result is completely symmetric and the inclination of the
wave-front causes the disappearance of symmetry. The amplitudes are reduced behind the
location of inclusions relative to the direction of the wave-front. This phenomenon shows
that the existence of inclusions leads to scattering and especially absorption the most
part of incoming waves and causes a shadow zone effect behind the inclusions [74]. The
absorbed waves are trapped inside the inclusions and experience intermittent reflections
with more delay, which increases the duration of convergence time. Moreover, the high-
est volume of trapped waves emerges (Figure 4(a)) because of direct waves collision to the
inclusions. Meanwhile, Figure 4(b,c) show the stronger role of inclusions in the deviation of
the waves from their initial paths and blocking their paths to the surface. In circular-shaped
inclusions, the incidence waves can easily creep on the boundaries because of the rotary
section of inclusions and the amplitude of crawler waves (C) is higher than the reflected
phase (R). The details aremore visible for incidence angles of 30° and 60°. In Figure 4(d), the
effect of the crawlerwaves on the ground surface is significantly reduced and the inclusions
block the paths of thewaves behind the first inclusion. At the point of waves collision to the
first inclusion, the existence of inclusion does not allow the waves to cross easily and reach
thebehind sideof inclusion relative to the angle of the incidencewaves andacts as abarrier.
Although the second inclusion touches a lower volumeof directwaves, a significant volume
of reflectedwaves hits the surface and then is trappedbetween the topboundaries of inclu-
sions and ground surface. Therefore, the vibrations are still visible over time. Figure 5 shows
the model of four circular inclusions placed in two rows. As can be seen, the oscillations of
the responses aremore than themodel of twin inclusions (Figure 4). The volume of trapped
waves is higher and the contribution of reflected and crawler phases are stronger. For this
reason, the convergence time is prolonged. A closer look at Figure 5(a) shows that in the
vertical angle of waves, themost part of waves is reflected and trapped immediately by the
inclusions embedded in the second row. Therefore, the contributionof inclusions in the first
row is decreased and the vibrations of diagrams are diminished. In Figure 5(b), the existence
of inclusions helped the waves to leave the medium faster. Also, an appropriate crawler
and reflection phases are observed in Figure 5(c,d), suggesting the severe reflections on
the boundaries placed in front of the wave-front. In the following, the results of 8 and 16
circular inclusions are presented. The high intricacy of the time-domain responses for the
mentioned models makes it very difficult to determine the individual phases of incidence
waves on the surface exactly.

Figures 8–11 show the waves scattering patterns in the presence of multiple elliptical
inclusions. When the inclusions are elliptical, the volume of trapped waves is decreased.
But,more iterative reflections of trappedwaves occurwith a shorter delay, which is because
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Figure 8. Synthetic seismograms of the ground surface and the procedure of the SH-waves dispersion
with time, for the model of twin elliptical inclusions and the incident angle of (a) θ = 0◦, (b) θ = 30◦,
(c) θ = 60◦ and (d) θ = 90◦.
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Figure 9. Synthetic seismograms of the ground surface and the procedure of the SH-waves dispersion
with time, for the model of four elliptical inclusions in two rows and the incident angle of (a) θ = 0◦, (b)
θ = 30◦, (c) θ = 60◦ and (d) θ = 90◦.
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Figure 10. Synthetic seismograms of the ground surface and the procedure of the SH-waves dispersion
with time, for the model of eight elliptical inclusions and the incident angle of (a) θ = 0◦, (b) θ = 30◦,
(c) θ = 60◦ and (d) θ = 90◦.
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Figure 11. Synthetic seismograms of the ground surface and the procedure of the SH-waves dispersion
with time, for the model of 16 elliptical inclusions and the incident angle of (a) θ = 0◦, (b) θ = 30◦, (c)
θ = 60◦ and (d) θ = 90◦.
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Figure 12. The 3D amplification of the ground surface versus different dimensionless frequencies for
the model of twin circular inclusions subjected to the SH-waves and the incident angle of (a) θ = 0◦, (b)
θ = 30◦, (c) θ = 60◦, and (d) θ = 90◦.

of the smaller medium of inclusions. The continuous fluctuations in a short period of time
can be observed in the responses. Like the previous cases, the wave absorption by inclu-
sions reduced the amplitudes of waves right above their locations. Moreover, the specific
shape of elliptical inclusions diminishes the amplitude of crawler waves and the trapped
waves between the inclusions and the ground surface. In Figure 8(a), the collision of verti-
cal waves to the below boundary of the inclusions induces the barrier effect of inclusions
stronger than the circular models such that the waves cannot crawl on the boundaries and
reach the surface suitably. In Figure 8(b), a significant portion of the waves can creep along
the boundaries and the amplitude of reflected waves is very lower compared to the similar
circularmodel (Figure 4(b)). When the incidence angle is 60° (Figure 8(c)), the crawler phase
is formed easier. Also, in Figure 8(d), the effect of the shadow zone behind the inclusions is
weakened. In the following, the responses of 8 and 16 elliptical inclusions are presented.

7.3. Frequency-domain responses

Presenting the results of frequency-domain is the only possibleway to illustrate the general
pattern of surface displacements subjected to seismic waves. Figures 12–15 demonstrate
the 3D amplification patterns in the presence ofmultiple circular inclusions. In themodel of
twin circular inclusions with θ = 0° (Figure 12(a)), the response is symmetric and one can
see low amplifications in the location of inclusions, which is because of wave absorption
by the inclusions. The collision of the incident waves to the boundary of inclusions sepa-
rated the direct waves to reflected and refracted phases of waves. A portion of the reflected
waves leaves the medium and another portion deviates from its initial paths and reaches
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Figure 13. The 3D amplification of the ground surface versus different dimensionless frequencies for
themodel of four circular inclusions in two rows subjected to the SH-waves and the incident angle of (a)
θ = 0◦, (b) θ = 30◦, (c) θ = 60◦, and (d) θ = 90◦.

Figure 14. The 3D amplification of the ground surface versus different dimensionless frequencies for
themodel of eight circular inclusions subjected to the SH-waves and the incident angle of (a) θ = 0◦, (b)
θ = 30◦, (c) θ = 60◦, and (d) θ = 90◦.
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Figure 15. The 3D amplification of the ground surface versus different dimensionless frequencies for
the model of 16 circular inclusions subjected to the SH-waves and the incident angle of (a) θ = 0◦, (b)
θ = 30◦, (c) θ = 60◦, and (d) θ = 90◦.

Figure 16. The 3D amplification of the ground surface versus different dimensionless frequencies for
the model of twin elliptical inclusions subjected to the SH-waves and the incident angle of (a) θ = 0◦,
(b) θ = 30◦, (c) θ = 60◦, and (d) θ = 90◦.
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Figure 17. The 3D amplification of the ground surface versus different dimensionless frequencies for
the model of four elliptical inclusions in two rows subjected to the SH-waves and the incident angle of
(a) θ = 0◦, (b) θ = 30◦, (c) θ = 60◦, and (d) θ = 90◦.

Figure 18. The 3D amplification of the ground surface versus different dimensionless frequencies for
the model of eight elliptical inclusions subjected to the SH-waves and the incident angle of (a) θ = 0◦,
(b) θ = 30◦, (c) θ = 60◦, and (d) θ = 90◦.
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Figure 19. The 3D amplification of the ground surface versus different dimensionless frequencies for
the model of 16 elliptical inclusions subjected to the SH-waves and the incident angle of (a) θ = 0◦, (b)
θ = 30◦, (c) θ = 60◦, and (d) θ = 90◦.

the surface. The main volume of the refraction phase is trapped inside the inclusions and
experience intermittent reflections. This effect can significantly increase the amplification
on the surface. Moreover, because of the rotary shape of inclusions, the incident waves
can crawl on the boundary of inclusions and reach the surface as well. The reflected and
crawler waves helped the trappedwaves to increase the values of amplification at a certain
distance to the inclusions. Therefore, in some specific frequencies, one can see the ampli-
fications equal to 2.5 between the location of inclusions. In Figure 12(b), the inclination of
the wave-front to θ = 30° destroyed the symmetry of response such that extremely low
amplifications are observed behind the location of inclusions relative to the angle of the
wave-front. However, the maximum amplification of about 2.7 is obtained in the side of
waves’ entrance. When the incidence angle is θ = 60° (Figure 12(c)), the maximum ampli-
fications occur where the incident waves are collided directly to the inclusions and then
reflected reversely. Then, the reflected waves encounter the ground surface and increase
the amplifications to about 2.5, which is slightly lower than the case of θ = 30°, because of
the more intense increase in the blocking effect of inclusions. However, still can see some
amplified locations on the other side of inclusions, which emerged due to the trapped
waves. In the model of twin circular inclusions with the angle of θ = 90° (Figure 12(d)), a
high amplification is seen in the location of first inclusion. In this case, the main reason for
amplifications to about 3 is the simplicity of the reflected waves to reach the surface due to
the barrier effect of inclusions in front of the transientwaves. In addition, because of the cir-
cular shape of inclusions, the crawler waves creep horizontally on the boundaries and their
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effect on the amplification appears on the behind side of inclusions. When the inclusions
are regularly distributed in two rows (Figure 13), the transient waves aremainly reflected or
absorbed directly by the inclusions of lower-level; thus, reduction of the impact waves to

Figure 20. Wave propagation snapshots and the procedure of the SH-waves dispersion below the
surface, for the model of twin circular inclusions for incident angle of θ = 0◦.
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the upper inclusions leads to decreasing the volume of trapped waves near to the surface
and lower amplification. In the following, the frequency-domain results of 8 and 16 circu-
lar inclusions are presented. The obtained responses show that the highest amplification is

Figure 21. Wave propagation snapshots and the procedure of the SH-waves dispersion below the
surface, for the model of twin circular inclusions for incident angle of θ = 30◦.
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achievedwhen the incident waves are applied horizontally. Moreover, increasing the num-
ber of rows has increased the maximum amplification, which is clearly visible in Figures 14
and 15(d).

Figure 22. Wave propagation snapshots and the procedure of the SH-waves dispersion below the
surface, for the model of twin circular inclusions for incident angle of θ = 60◦.
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The 3D amplification patterns of multiple elliptical inclusions are presented in Figures
16–19. Comparing the response of twin elliptical inclusions subjected to vertical incident
waves (Figure 16(a)) with a similar circular model (Figure 12(a)) shows that when the inclu-
sions are elliptical, the maximum amplifications are concentrated on the locations of the

Figure 23. Wave propagation snapshots and the procedure of the SH-waves dispersion below the
surface, for the model of twin circular inclusions for incident angle of θ = 90◦.
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surface where the inclusions are placed. However, in the model of circular inclusions, the
amplified points emerge between the inclusions. Themain differences in amplifications are
becauseof the specific shapeof elliptical inclusions. These inclusions transversely reflect the

Figure 24. Wave propagation snapshots and the procedure of the SH-waves dispersion below the
surface, for the model of twin elliptical inclusions for incident angle of θ = 0◦.
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collidedwaves from the lower boundaries of inclusions and prevent the creation of crawler
phases of transient waves. The wide and smaller medium of elliptical inclusions helps
absorption and trapping of the waves, leading to the concentration of the amplifications

Figure 25. Wave propagation snapshots and the procedure of the SH-waves dispersion below the
surface, for the model of twin elliptical inclusions for incident angle of θ = 30◦.
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Figure 26. Wave propagation snapshots and the procedure of the SH-waves dispersion below the
surface, for the model of twin elliptical inclusions for incident angle of θ = 60◦.

right above the location of inclusions. By inclination of the waves front to θ = 30° (Figure
16(b)), themaximumamplification of 2.4 is obtained,which is lower than the similar circular
case (Figure 12(b)). In this model, the barrier effect of inclusions became stronger than the
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Figure 27. Wave propagation snapshots and the procedure of the SH-waves dispersion below the
surface, for the model of twin elliptical inclusions for incident angle of θ = 90◦.

circular model. As a result, it increased the intensity of the shadow zone behind the inclu-
sions and decreased the maximum values of amplification because of the lower volume of
trapped waves. When the incident waves are applied by θ = 60° (Figure 16(c)), the weak
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role of elliptical inclusions in preventing the wave passage is significant and the crawler
waves are simply creeped along the boundaries. This effect is sharper when the wave-front
reached the horizon (Figure 16(d)). Although the maximum amplification of about 3.4 is
achieved in Figure 16(d), the amplified zones are very small and the amplifications occur
in the collision point of direct incident waves to the first inclusion. As the responses show
in Figure 17, increasing the number of rows can decrease the amplifications of the surface.
Furthermore, increasing the number of inclusions leads to the growth of amplification due
to the harder exit of the trappedwaves. In the following, the responses of 8 and 16 elliptical
inclusions are presented.

7.4. Wave propagation snapshots

Wave propagation below the surface is illustrated using wave scattering snapshots at
different times. Figures 20–27 show the diffraction of SH-waves in the presence of twin
circular/elliptical models for the incident angles of 0°, 30°, 60°, and 90°. To preparation of
the snapshots, 14028 and 10201 internal points are considered into the main domain and
each of inclusions, respectively. The surface range of−5b to 5b and the depth of−5bwere
considered in all snapshots. The results indicate the reflected and crawler phases of seis-
mic waves on the boundary of inclusions. Moreover, they show the effect of trappedwaves
inside the medium of inclusions and between their boundaries and ground surface, which
become even sharper over time.

8. Conclusion

A numerical direct TD-BEM based on half-space Green’s functions was implemented in
developing the algorithm of DASBEM to prepare the model of a half-plane cluttered with
arbitrarily shaped multiple subsurface inclusions, subjected to scattering obliquely inci-
dent plane SH-waves. To establish the model, the discretization was concentrated only
around the interfaces of inclusions connected to the surrounding domain. Utilizing the
sub-structuring process, the problemwas decomposed into amulti-pitted half-plane and a
systemof closed alluvial solids. By applying themethod to the separated parts of themodel
and obtaining all matrices, the coupled matrix can be determined through satisfying con-
tinuity conditions on the interfaces. After solving the final equation in the time-domain,
the boundary values including displacements/tractionswere obtained. The accuracy of the
methodwas examinedby analyzing several examples. Comparing the responseswith those
presented in the previously publishedworks revealed a good agreement andhigh accuracy
of the proposedmethod. To complete the results, the synthetic seismograms of the surface
were illustrated in the presence of multiple subsurface circular/elliptical inclusions. Then,
by converting the time-domain responses to frequency-domain, the amplification patterns
and displacements of the ground surfacewere depicted. Finally, to demonstrate thewave’s
propagation below the surface, the wave scattering snapshots were presented at different
times. The main results of the present paper can be summarized as follows:

(1) The half-plane TD-BEMwas able to prepare the simplemodels for time-history step-
by-step seismic analysis of the ground surface in the presence of arbitrarily shaped
multiple subsurface inclusions.
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(2) Synthetic seismograms of the surface showed that the amplitudes were reduced
behind the location of inclusions relative to the direction of the wave-front. The
inclusions were dispersed in the surface and absorbed the most part of incoming
waves. Moreover, increasing the number of inclusions has a direct impact on hold-
ing seismic waves in the medium, which is the main reason for more intensity of
displacements on the surface.

(3) By comparing the seismic responses of multiple underground cavities [61] and the
present results, it was observed that the role of subsurface inclusions was weaker
on the seismic isolation to create the safe area on the ground surface. Because of
the intermittent reflections of the absorbed waves trapped inside the inclusions or
between their boundaries and ground surface, the duration of convergence time
and value of amplification on the surface increased.

(4) In circular-shaped inclusions, the incidence waves easily crept on the boundaries
because of the rotary section of inclusions and the amplitude of crawler waves is
higher than the reflectedwaves.When the inclusions are elliptical, the specific shape
of elliptical inclusions diminishes the amplitude of crawler waves and the trapped
waves. However, more iterative reflections of trapped waves occurred.

(5) The distribution of the inclusions in regular rows decreased the impact of incidence
waves on the surface. When the incidence angle was vertical, the largest portion
of waves is reflected and trapped immediately by the inclusions embedded in the
lower rows, leading to a decreased contribution of inclusions in the first row and the
vibration of diagrams. By applying the incident waves horizontally, the first column
of inclusions blocked the paths of the seismic waves and the highest amplitudes
were formed at the first collision side.

(6) By increasing the inclusion rows, the amplifications were decreased on the surface.
In addition, increasing the number of inclusions led to the growth of amplification
due to the harder exit of the trapped waves.

The proposed method can be utilized by geotechnical/mechanical engineers for tran-
sient analysis of multiple heterogeneous topographical features and composite materials
in the field of earthquake engineering. Moreover, this method is practically recommended
to researchersworking on the time-history analysis of suchmaterialswith arbitrarily shaped
multi-inhomogeneity.
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