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a b s t r a c t 

In this paper, a hybrid time-domain half-plane finite element-boundary element method (FEM/BEM) is developed 

to analyze the arbitrarily shaped alluvial sites subjected to propagating vertically incident plane SH -wave. First, 

the model is decomposed into two parts, a closed alluvial domain and an open valley-shaped feature as the 

surrounding medium. The former part is modeled by a conventional FE approach and, a recently proposed half- 

plane BEM is successfully applied to prepare the model of the latter part. After satisfying the continuity conditions 

at the interface, the coupled equations are solved step-by-step in FE framework to obtain the unknown values. 

In the use of the method, the interface of the basin needs to be discretized by BE meshes. Finally, the prepared 

computer algorithm is validated by solving some practical examples. The results show that the models are very 

simple and, the formulation has the appropriate accuracy. Furthermore, due to the significant reduction of the 

boundary elements in the half-plane BEM compared to the full plane BEM, the duration of the analysis and error 

waves in this formulation decreased. Therefore, the proposed hybrid method can be easily used in the nonlinear 

analysis of site response and the seismic interaction of soil-structure. 
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. Introduction 

Site effects typically lead to considerable damage on buildings close

o topographic features after seismic events. For this reason, numerous

ethods have been introduced for modeling and quantitative definition

f these effects. Among these methods, numerical ones, including volu-

etric, boundary, and hybrid methods have gained great attention. 

In volumetric methods, as the first group of numerical methods, the

omain of study area is discrete and the governing boundary conditions

uch as radiation of waves in the infinite are considered by defining ap-

roximate energy absorbing boundaries around the target area [1] . The

ost well-known volumetric methods are FEM, finite difference method

FDM) and spectral finite element method (SFEM). Many studies have

een conducted on the seismic response of topographic features using

hese methods [2–10] . They are powerful tools to perform dynamic anal-

sis on the finite plastic-elastic domains, however, their accuracy is re-

uced in the modeling of the infinite and semi-infinite domain and deal

ith some limitation; therefore, researchers have tried to use a numer-

cal method such as BEM. 

The BEM methods are basically developed for the purpose of analyz-

ng the linear elastic domain, they can provide an opportunity for the
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ser to evaluate the problem using the geometric boundary meshing of

he domain. Providing the automatic radiation conditions of waves in an

nfinite domain is one of the most important advantages of this method.

he BEM has been developed in two domains of time and frequency, but

he advantages of combining with other numerical methods and analyz-

ng various problems involving time dependent geometries and extract-

ng real response values are possible only in time domain BEM. Several

esearchers have tried to improve the formulation of time-domain BEM

nd provide displacement and traction of the kernel for solving elasto-

ynamic problems inside and outside the plane. Nevertheless, due to

pplying the Heaviside functions in the extraction of the kernel, the re-

ults have been reported in different waveforms by a reduction in the

ccuracy of the traction kernels [11–15] . To deal with this problem, Is-

ail and Banerjee [16,17] , without considering of Heaviside functions,

resented full plane kernels for antiplane elastodynamics as the most

ccurate and precise results. Later, Kamalian et al. [18] modified the

n-plane kernels and implemented them in the time-domain of the BEM

lgorithm to analyze seismic geotechnical problems [19–21] . Yu et al.

22] and Soares Jr et al. [23] modified the formulation of BEM in time-

omain for out-of-plane elastodynamic problems. Sohrabi ‐Bidar et al.

24–26] performed a seismic analysis on 3D topographic features by
iiees.ac.ir (M. Kamalian), m.panji@iauz.ac.ir (M. Panji). 
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Fig. 1. Schematic design of the bounded region of FEM and unbounded region of BEM. 
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2  
resenting elastodynamic traction kernels using BEM in time-domain.

ecently, Panji et al. [27] presented a BEM in time domain along with

loses and compressed complex half-plane time convoluted kernels. In

his method, some parts of the feature that were higher than the ground

urface were modeled. It is of note that this method takes the atten-

ion toward the seismic behavior of concave and convex topographies

28–30] . 

Takemiya and Fujiwara [31] were the first who evaluated the seismic

otion of valleys and alluvial sites subjected to propagating incident SH

aves in the time domain BEM. Then, Fishman and Ahmad [32] studied

he dispersion of SH, SV, and P waves from semi-elliptical valleys em-

loying BEM. Also, Semblat [33] evaluated local geological effects on

ite by the same method. Dravinski [34] employed indirect BEM to ana-

yze the seismic response of alluvium with the folded middle base under

ropagating incident SH waves. Delépine and Semblat [35] and Kham

t al. [36] respectively employed BEM to evaluate the seismic motion

f high-height deep valley and deep alluvial basin in Tunisia. In recent

ears, Fu et al. [37,38] presented the method of the Singular boundary

lement as a simple mathematical approach and an easy program for

nalyzing the canyon topography. 

The third group of numerical methods is Hybrid methods. Re-

earchers often combine different numerical and analytical methods to

njoy the advantages of both of them, which lead to hybrid models.

hese methods can be divided into two groups. In the first group, the

EM is present as the basic method [39] , but in the second group, other

umerical or analytical methods for combining are used [40–42] . In

he first group, the BEM are often combined with volumetric meth-

ds, which one of the most important advantages of this method is

o provide a dynamic analysis of infinite plastic-elastic media in the

ime domain. Accordingly, dynamic analysis of infinite plastic-elastic

edia and infinite linear media around topographic feature are done

sing volumetric and boundary approaches, respectively. After publish-

ng the hybrid BEM/FEM programs, which is suitable for time-domain

imulations, Karabalis and Beskos [43] and Spyrakos & Beskos [44] em-

loyed them to evaluate the interaction of soil and structure in two

imensional and three-dimensional space. Based on their formulation,

on Estorff and Prabucki [45] presented a more comprehensive hybrid

ethod for elastodynamic problems. Bielak et al. [46] also applied a
 I  

195 
ybrid BEM/FEM to evaluate the seismic response of homogeneous

emicircular valleys subjected to incident SH waves. Later, Von Estorff

nd Firuziaan [47,48] developed this method to analyze the non-linear

roblems of soil and structure interaction. Kamalian et al. [49] pre-

ented a 2D non-linear hybrid BEM/FEM in time domain, which was

mplemented in the analysis of nonlinear and linear waves propaga-

ion [50–56] . Recently, Romero et al. [57] proposed a three-dimensional

onlinear method of combining FEM and BEM for solving soil and struc-

ure interaction problems. In this method, the FEM formulation was per-

ormed based on Green’s implicit functions and nonlinear behavior at

he interface of two methods was considered. 

Therefore, the efficiency and accuracy of hybrid methods have led

he authors of this paper to present a general algorithm in the time do-

ain via combining the FEM and one of the novel methods of BEM called

he half-plane BEM [27] . This BEM reduces the complexity of the model

nd the number of the boundary for meshing, and significantly reduces

he duration of the analysis owing to discretization of some parts of the

opographic feature [27] . Accordingly, in the present study, the allu-

ial site is decomposed into two domains. The first domain includes a

losed alluvial domain modeled by the conventional FEM. The second

omain is an open valley-shaped feature as the surrounding medium

hat the half-plane BEM is proposed for modeling. Then, to meet the

oundary conditions at the interface, boundary stresses in the half-plane

EM are converted to node forces equivalent to FEM. Subsequently, the

quations are solved in the framework of FEM to calculate the unknown

alues. Finally, a software is provided to implement this method in com-

uter codes, and the accuracy of this method is examined using various

xamples. 

. Statement of the problem 

In this section, the formulation of the problem and its matrix form are

resented. As shown in Fig. 1 , the study domain consists of two different

egions. Region 1 is bounded and modeled by FEM. The boundaries of

his region are the outer boundary A, which is the free surface of the

round, the internal boundary B is common with the boundary Region

, and the internal points of this region are represented by the letter

. Region 2 is unbounded and modeled using the half-plane BEM. The
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oundaries of this region are denoted as B boundary that is common

ith Region 1 and just this boundary of the feature gets mesh in the

alf-plane BEM. The governing equation on this problem is the dif-

erential (scalar wave) equation ( Eq. (1) ), which is presented for an

sotropic, elastic, homogeneous domain with a small displacement do-

ain [58] and the boundary condition governing on a linear and homo-

eneous elastic half-plane media is in accordance with Eq. (2) . 

 

2 �̃� + 𝐹 = 

1 
𝑐 2 

𝜕 2 �̃� 

𝜕 𝑡 2 
(1)

𝜕 ̃𝑢 ( 𝑥, 𝑦, 𝑡 ) 
𝜕𝑛 

||||𝑦 =0 = 0 (2)

here �̃� is out-of-plane displacement, c is shear wave velocity equals to
 

𝜇

𝜌
, 𝜌 is density, 𝜇 is shear modulus, F is an out-of-plane volumetric

orce and, n is the normal vector which is perpendicular to the ground

urface 

.1. Formulation of FEM 

In the FEM, first, the weak formulation of Eq. (1) is extracted using

eighed residues by Eq. (3) . 

Γ
𝑞 𝑖 𝛿�̃� 𝑖 𝑑Γ − ∫Ω �̃�𝑖𝑗 𝛿�̃� 𝑖𝑗 𝑑Ω + ∫Ω 𝐹 𝑖 𝛿�̃� 𝑖 𝑑Ω = ∫Ω 𝜌 ̈̃𝑢 𝑖 𝛿�̃� 𝑖 𝑑Ω (3)

here �̃�𝑖𝑗 and �̃� 𝑖𝑗 are respectively stress and strain tensor components

n Ω an enclosed area (region 1) and q i is traction on Γ boundary

boundary of region 1). 

Then, Ω (the enclosed area) is divided into 𝛽 numbers of small ele-

ents and elements of displacement, strain, and stress are defined as a

unction of displacement in each point of the node. 

�̃� 𝛽 = 𝐿 

𝛽𝑢 𝛽

�̃� 𝛽 = 𝐵 

𝛽𝑢 𝛽

̃ 𝛽 = 𝐶 

𝛽 �̃� 𝛽 (4)

here L 𝛽 , B 

𝛽 , and C 

𝛽 respectively are interpolation functions of dis-

lacement, strain-displacement matrices, and an elastic matrix of 𝛽 the

lement. By replacing Eq. (4) in Eq. (3) the following equation is ob-

ained: ∑
𝛽

∫Γ𝛽 𝑞 
𝛽

𝑖 
𝛿�̃� 

𝛽

𝑖 
𝑑 Γ𝛽− 

∑
𝛽

∫Ω𝛽

�̃�
𝛽

𝑖𝑗 
𝛿�̃� 

𝛽

𝑖𝑗 
𝑑 Ω𝛽+ 

∑
𝛽

∫Ω𝛽

𝐹 
𝛽

𝑖 
𝛿�̃� 

𝛽

𝑖 
𝑑 Ω𝛽

= 

∑
𝛽

∫Ω𝛽

𝜌 ̈̃𝑢 
𝛽

𝑖 
𝛿�̃� 

𝛽

𝑖 
𝑑 Ω𝛽 (5)

And, each term of Eq. (5) can be expressed by u vector as follows: 

∫Γ𝛽 𝑞 
𝛽

𝑖 
𝛿�̃� 

𝛽

𝑖 
𝑑 Γ𝛽 = 𝛿𝑢 𝑇 ∫Γ𝛽 𝐿 

𝛽𝑇 𝑞 𝛽𝑑 Γ𝛽

∫Ω𝛽

�̃�
𝛽

𝑖𝑗 
𝛿�̃� 

𝛽

𝑖𝑗 
𝑑 Ω𝛽 = 𝛿𝑢 𝑇 ∫Ω𝛽

𝐵 

𝛽𝑇 𝐶 

𝛽𝐵 

𝛽𝑑 Ω𝛽𝑢 

∫Ω𝛽

𝐹 
𝛽

𝑖 
𝛿�̃� 

𝛽

𝑖 
𝑑 Ω𝛽 = 𝛿𝑢 𝑇 ∫Ω𝛽

𝐿 

𝛽𝑇 𝐹 𝛽𝑑 Ω𝛽

Ω𝛽

𝜌 ̈̃𝑢 
𝛽

𝑖 
𝛿�̃� 

𝛽

𝑖 
𝑑 Ω𝛽 = 𝛿𝑢 𝑇 ∫Ω𝛽

𝐿 

𝛽𝑇 𝜌𝐿 

𝛽𝑑 Ω𝛽 �̈� (6)

By substituting the definitions in Eq. (6) in Eq. (5) and after removing

u T coefficient, the matrix form of the governing equation is obtained

 Eq. (7) ). 

 ̈𝐮 + 𝐊𝐮 = 𝐑 (7)

here M is a mass matrix, K is the stiffness matrix, and R is the sum of

urface and volumetric forces [10,59] . 
196 
 = 

∑
𝛽

𝑀 

𝛽 = 

∑
𝛽

∫Ω𝛽

𝐿 

𝛽𝑇 𝜌𝐿 

𝛽𝑑 Ω𝛽

𝐊 = 

∑
𝛽

𝐾 

𝛽 = 

∑
𝛽

∫Ω𝛽

𝐵 

𝛽𝑇 𝐶 

𝛽𝐵 

𝛽𝑑 Ω𝛽

𝐑 = 

∑
𝛽

( 

∫Γ𝛽 𝐿 

𝛽𝑇 𝑞 𝛽𝑑 Γ𝛽 + ∫Ω𝛽

𝐿 

𝛽𝑇 𝐹 𝛽𝑑 Ω𝛽

) 

(8) 

.1.1. Time stepping algorithm 

Among several methods to solve differential equations, in this pa-

er, the Newmark’s integration method is used. In this method, which

s considered as the expansion of the linear acceleration method, the ve-

ocity and displacement are assumed in the form of Eq. (9) , where 𝛼 and

are respectively considered to be 0.25 and 0.5 to supply integration

ccuracy and stability [60] . 

�̇� 𝑡 +Δ𝑡 
}
= 

{
�̇� 𝑡 
}
+ 

[
(1 − 𝛿) 

{
�̈� 𝑡 
}
+ 𝛿

{
�̈� 𝑡 +Δ𝑡 

}]
Δ𝑡 

𝐮 𝑡 +Δ𝑡 
}
= 

{
𝐮 𝑡 
}
+ 

{
�̇� 𝑡 
}
Δ𝑡 + 

[( 1 
2 
− 𝛼

){
�̈� 𝑡 
}
+ 𝛼

{
�̈� 𝑡 +Δ𝑡 

}]
Δ𝑡 2 (9) 

By re-writing Eq. (7) at time ( t + Δt ) and substituting Eq. (9) in it,

q. (10) is obtained for FEM governing the enclosed region: 

 𝐹𝐸 . 
{
𝐮 𝑡 +Δ𝑡 
𝐹𝐸 

}
= 𝐑 

𝑡 +Δ𝑡 
𝐹𝐸 

+ 𝐙 

𝑡 +Δ𝑡 
𝐹𝐸 

(10)

here 

𝐊 𝐹𝐸 = 𝐊 + 

4 
Δ𝑡 2 

𝐌 

𝐙 

𝑡 +Δ𝑡 
𝐹𝐸 

= 𝐌 . 

( 

4 
Δ𝑡 2 

𝐮 𝑡 + 

4 
Δ𝑡 

�̇� 𝑡 + ̈𝐮 𝑡 
) 

 

𝑡 +Δ𝑡 
𝐹𝐸 

= 𝐑 (11) 

.2. Half-plane BEM formulation 

In BEM, the key parameters are determined by solutions obtained

rom the basic equation. The fundamental solutions of half-plane in the

ime domain can be determined by solving Eqs. (1) and ( 2 ). These solu-

ions were presented by Panji et al. [27] . 

.2.1. Boundary integration equations (BIE) 

The main form of the equation of the direct boundary integral in

he time domain can be obtained by applying the weighted residual

ntegral to Eq. (1) and ignoring the contribution of the initial conditions

nd body forces. If the problem involves input waves, the BIE form is

odified according to Eq. (12) , as follows: 

 ( 𝜉) 𝑢 ( 𝜉, 𝑡 ) = ∫Γ
{ 

∫
𝑡 

0 

[
𝑢 ∗ ( 𝑥, 𝑡 ; 𝜉, 𝜏) .𝑞( 𝑥, 𝜏) − 𝑞 ∗ ( 𝑥, 𝑡 ; 𝜉, 𝜏) .𝑢 ( 𝑥, 𝜏) 

]
𝑑𝜏

} 

× 𝑑Γ( 𝑥 ) + 𝑢 𝑓𝑓 ( 𝜉, 𝑡 ) (12) 

here u ∗ and q ∗ respectively are the half-plane fundamental solutions

or displacement and stress field in x point and t time induced by a unit

nti-plane impulsive force at a point in 𝜉 location and preceding time of

. Also, u and q are respectively boundary displacements and stresses,

( x ) is the boundary of the considered domain, c ( 𝜉) is geometric coeffi-

ient, and u ff( 𝜉, t ) is displacement of the free field of the ground surface

ithout irregular surfaces. To solve the BIE and to perform integrals, the

xis of the time and the boundary of the domain must be discretized.

ime integration can be obtained by discretization of time axis using

 equal time steps with Δt duration ( t = N Δt ). Assuming a linear vari-

ble for the temporal interpolation functions, the BIE form is obtained

s follows: 
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Fig. 2. The flowchart of the software. 
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 ( 𝜉) 𝑢 𝑁 ( 𝜉) = 

𝑁 ∑
𝑛 =1 

∫Γ
( [

𝑈 

𝑁− 𝑛 +1 
1 ( 𝑥, 𝜉) + 𝑈 

𝑁− 𝑛 
2 ( 𝑥, 𝜉) 

]
𝑞 𝑛 ( 𝑥 )− [

𝑄 

𝑁− 𝑛 +1 
1 ( 𝑥, 𝜉) + 𝑄 

𝑁− 𝑛 
2 ( 𝑥, 𝜉) 

]
𝑢 𝑛 ( 𝑥 ) 

) 

× 𝑑Γ( 𝑥 ) + 𝑢 𝑓 𝑓 .𝑁 ( 𝜉) (13) 

here u N and u ff.N are a boundary and free field displacement at t = N Δt ,

 

𝑁− 𝑛 +1 
1 + 𝑈 

𝑁− 𝑛 
2 and 𝑄 

𝑁− 𝑛 +1 
1 + 𝑄 

𝑁− 𝑛 
2 are condensed closed-form of half-

lane Scalar elastodynamic kernels for displacement and stress compo-

ents, respectively, and u n ( x ) and q n ( x ) are respectively displacement

nd traction fields. All processes have been completely analyzed and

alf-plane scalar elastodynamic kernels have been provided by Panji

t al. [27] for displacement and stress components. From now on, the ap-

roximation process is entered in the formulation considering the need

or the discretization of the boundary of the domain to numerical inte-

ration of the location parameter in Eq. (13) . For meshing the geometric

oundary of the domain, a three-node second-order element is used and

he spatial integral is numerically obtained as follows: 

 ( 𝜉) 𝑢 𝑁 ( 𝜉) 

= 

𝑁 ∑
𝑛 =1 

Ψ∑
𝜓=1 

⎡ ⎢ ⎢ ⎣ 
{ ∫Γ𝜓 

[
𝑈 

𝑁− 𝑛 +1 
1 ( 𝑥 ( 𝜅) , 𝜉) + 𝑈 

𝑁− 𝑛 
2 ( 𝑥 ( 𝜅) , 𝜉) 

]
𝑁 𝛼( 𝜅) |𝐽 |𝑑 𝜅} 

𝑞 𝑛 
𝛼
− { ∫Γ𝜓 

[
𝑄 

𝑁− 𝑛 +1 
1 ( 𝑥 ( 𝜅) , 𝜉) + 𝑄 

𝑁− 𝑛 
2 ( 𝑥 ( 𝜅) , 𝜉) 

]
𝑁 𝛼( 𝜅) |𝐽 |𝑑 𝜅} 

𝑢 𝑛 
𝛼

⎤ ⎥ ⎥ ⎦ 
+ 𝑢 𝑓 𝑓 .𝑁 ( 𝜉) (14) 

here Ψ is the total number of boundary elements and Γ𝜓 is a part

f the boundary with element 𝜓 being a part of it. N 𝛼 ( 𝜅) is quadratic

hape functions in local intrinsic coordinates 𝜅( 𝛼 = 1, 2, 3); 𝑢 𝑛 
𝛼

and 𝑞 𝑛 
𝛼

re respectively node values for displacement and stress; and J shows

acobian of the transformation, which is obtained by regular and log-

rithmic Gaussian numerical integral for non-singular and singular in-

egrals, respectively. The matrix form of BIE is obtained by Eq. (15) as
197 
ollows [27] : 

𝑁 

𝑛 =1 
𝐇 

𝑁− 𝑛 +1 { 𝐮 𝑛 } = 

𝑁 ∑
𝑛 =1 

𝐆 

𝑁− 𝑛 +1 { 𝐪 𝑛 } + 

{
𝐮 𝑓 𝑓 .𝑁 

}
(15) 

here H 

N − n + 1 and G 

N − n + 1 are matrices obtained from the integration

f half-plane kernels of stress and displacement on boundary elements.

lso, u n and q n are vectors of node values of displacement and stress at

he time step n . By writing Eq. (15) for each boundary node in t + Δt , the

rrangement of the equation system takes the following matrix form. 

 

1 . 𝐮 𝑁 = 𝐆 

1 . 𝐪 𝑁 + 𝐙 

𝑁 (16)

here u 

N and q 

N are displacement and stress vectors and Z N is the ef-

ects of dynamical history and displacement of the free field on the cur-

ent time node N . 

 

𝑁 = 

𝑁−1 ∑
𝑛 =1 

(
𝐆 

𝑁− 𝑛 +1 { 𝐪 𝑛 } − 𝐇 

𝑁− 𝑛 +1 { 𝐮 𝑛 } 
)
+ 

{
𝐮 𝑓 𝑓 .𝑁 

}
(17) 

.3. Combination of half-plane FEM/BEM 

In FEM, governing equations are adjusted by displacement and node

orce, while in BEM they are adjusted by displacement and node stress.

herefore, these two methods should be compatible with each other to

ombine their governing equations. To deal with this issue, two meth-

ds are used: either converting equations of BEM to similar equations

f FEM or converting the equations of FEM to similar equations of BEM.

onsidering that the first method has received much attention by re-

earchers because of its efficiency in nonlinear analyses, it is used also

n this paper. In order to adapt BEM to the FEM, boundary stresses must

e converted to node forces equivalent to FEM. In doing so, both sides



A. Nohegoo-Shahvari, M. Kamalian and M. Panji Engineering Analysis with Boundary Elements 105 (2019) 194–206 

Fig. 3. The geometry of the one-dimensional site. 

Fig. 4. The displacement time-history of input SH-wave in 

a point located in the flat surface of the ground in the time 

domain. 
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f Eq. (16) should be multiplied in reverse matrix G 

1 and then multi-

lied in the P matrix consisting of the interpolation functions used in

he problem. As a result, the equation is obtained as follows [49,58] : 

 𝐵𝐸 . 
{
𝐮 𝑡 +Δ𝑡 
𝐵𝐸 

}
= 𝐑 

𝑡 +Δ𝑡 
𝐵𝐸 

+ 𝐙 

𝑡 +Δ𝑡 
𝐵𝐸 

(18)

here 

𝐊 𝐵𝐸 = 𝐏 . 𝐆 

1 −1 . 𝐇 

1 

 

𝑡 +Δ𝑡 
𝐵𝐸 

= 𝐏 . 𝐪 𝑁 

𝐙 

𝑡 +Δ𝑡 
𝐵𝐸 

= 𝐏 . 𝐆 

1 −1 . 𝐙 

𝑁 

𝑃 𝑚 = ∫Γ𝑚 𝑁 

𝑇 𝑁 𝑑 Γ𝑚 (19)

Based on Fig. 1 , to connect finite element (FE) to boundary element

BE) region, the condition for compatibility of displacement and equilib-

ium should be provided. Therefore, the boundary condition in common

oundary B is defined as follows: 

 

𝐵 
𝐹𝐸 

= 𝐮 𝐵 
𝐵𝐸 

, 𝐑 

𝐵 
𝐹𝐸 

+ 𝐑 

𝐵 
𝐵𝐸 

= 0 (20)

Finally, the equation governing the bounded and unbounded regions

s combined in t + Δt time as follows: 

̄
 𝐮 𝑡 +Δ𝑡 = 𝐑 

𝑡 +Δ𝑡 + 𝐙 

𝑡 +Δ𝑡 (21)
198 
With respect to the regions defined in Fig. 1 , the total stiffness matrix
̄
 , displacement vectors u 

t + Δt , force vectors R 

t + Δt , and the effects of the

ast dynamics history Z t + Δt are defined as: 

�̄� = 

⎡ ⎢ ⎢ ⎢ ⎣ 
𝐊 

𝐴𝐴 
𝐹𝐸 

𝐊 

𝐴𝐼 
𝐹𝐸 

𝐊 

𝐴𝐵 
𝐹𝐸 

𝐊 

𝐼𝐴 
𝐹𝐸 

𝐊 

𝐼𝐼 
𝐹𝐸 

𝐊 

𝐼𝐵 
𝐹𝐸 

𝐊 

𝐵𝐴 
𝐹𝐸 

𝐊 

𝐵𝐼 
𝐹𝐸 

𝐊 

𝐵𝐵 
𝐹𝐸 

+ 𝐊 

𝐵𝐵 
𝐵𝐸 

⎤ ⎥ ⎥ ⎥ ⎦ 
𝐮 ( 𝑡 +Δ𝑡 ) 𝑇 = 

[
𝐮 𝐴 𝐮 𝐼 𝐮 𝐵 

]
 

( 𝑡 +Δ𝑡 ) 𝑇 = 

[
𝐑 

𝐴 
𝐹𝐸 

𝟎 𝟎 
]

𝐙 

( 𝑡 +Δ𝑡 ) 𝑇 = 

[
𝐙 

𝐴 
𝐹𝐸 

𝐙 

𝐼 
𝐹𝐸 

𝐙 

𝐵 
𝐹𝐸 

+ 𝐙 

𝐵 
𝐵𝐸 

]
(22) 

After solving Eq. (21) and determining the unknown quantities in all

odes, one can determine the response of any internal point 𝜓 in Region

, such as the points of the ground surface around the desired feature

 Eq. (23) ). 

𝐮 𝑁.𝜓 
}
= 

𝑁 ∑
𝑛 =1 

(
𝐆 

⟨𝑁− 𝑛 +1 ⟩.𝜓 { 𝐪 𝑛 } − 𝐇 

⟨𝑁− 𝑛 +1 ⟩.𝜓 { 𝐮 𝑛 } ) + 

{
𝐮 𝑓 𝑓 .𝑁.𝜓 

}
(23)

here G 

⟨N − n + 1 ⟩. 𝜓 and H 

⟨N − n + 1 ⟩. 𝜓 are matrices with their elements de-

ived from the integration of dynamically institutionalized half-plane
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Fig. 5. The displacement time-history on the bottom boundary of site and comparison with displacement time-history of input SH-wave. 

Fig. 6. The displacement time-history of 

the central point of the site on the ground 

surface (Point O). 

e  

t  

i  

t

3

 

n  

m  

a  

b  

I  

u  

t  

T  

a

 

t  

m

4

4

 

s  

j  

F  

a  

a  

s  

w

𝐹  
lastodynamic kernels based on the position of the boundary nodes and

he internal points. Moreover, u 

N . 𝜓 denotes the displacement values in

nternal points and u 

ff.N . 𝜓 denotes vectors including free movement of

he ground surface in the internal points. 

. Flowchart 

A software called DASFEBEM (Dynamic Analysis of Structure by Fi-

ite Element/Boundary Element Method) is prepared in MATLAB do-

ain based on the formulation presented in Section 2 . This software an-

lyzes the dynamic response of the 2D domain under SH seismic wave

y considering elastic behavior, and calculates deformation and stress.

n FEM, 8-node elements and in BEM, second-order 3-node elements are

sed. All main subprograms are called as MAIN PROGRAM. In this sec-

ion, the management of time steps and run of the program is performed.

he subprograms, which are called by the MAIN PROGRAM command,

re introduced by the order of calling ( Fig. 2 ). 
199 
To evaluate the accuracy, efficiency, and capability of the aforemen-

ioned method for the analysis of topographic features in the time do-

ain, four examples will be solved. 

. Validation examples 

.1. One-dimensional 

In this example, the analysis of the response of a one-dimensional

ite with a homogeneous and uniform soil layer on rigid bedrock sub-

ected to the propagation of vertical SH-wave is performed. As shown in

ig. 3 , the problem is modeled as a rectangular alluvial valley located in

 half-space media, where 𝜇1 and 𝜌1 respectively are shear modulus and

lluvial density and 𝜇2 and 𝜌2 respectively are shear modulus and den-

ity of half-space. In this example, the selected radiant wave is Ricker

avelet function ( Eq. (24) ) [61,62] . 

 ( 𝑡 ) = 

[
1 − 2 

(
𝜋𝑓 𝑝 ( 𝑡 − 𝑡 0 ) 

)2 ]
𝑒 − 
(
𝜋𝑓 𝑝 ( 𝑡 − 𝑡 0 ) 

)2 
(24)
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Fig. 7. The displacement time-history of the 

central point of the site on the ground sur- 

face with the present method, half-plane 

BEM and RBRFEM (Point O). 

Table 1 

The specification of material to supply rigid boundaries. 

𝑐 2 
𝑐 1 

𝜌1 
(t ∕ m 3 ) 𝜌2 

(t ∕ m 3 ) 𝜇1 
(kN ∕ m 2 ) 𝜇2 

(kN ∕ m 2 )
10 2 2.1 180,000 189 ×10 5 1 

100 2 2.1 180,000 189 ×10 7 2 

200 2 2.1 180,000 756 ×10 7 3 

300 2 2.1 180,000 1.701 ×10 10 4 

Table 2 

Site and input wave properties in the one-dimensional example. 

A max (m) f p (Hz) 𝑡 0 ( s ) 𝜌1 
(t ∕ m 3 ) 𝜌2 

(t ∕ m 3 ) 𝜇1 
(kN ∕ m 2 ) 𝜇2 

(kN ∕ m 2 )
0.0001 2.4 0.9 2 2.1 180,000 1.701 ×1010 

w  

p  

f

𝑢  
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d  

p  
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H

𝑢

𝑢

𝛼

𝑟

𝛼
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w  

Table 3 

Site specifications and input wave in a 2D example (a rectangular alluvial 

valley). 

A max (m) f p (Hz) 𝑡 0 ( s ) 𝜌1 
(t ∕ m 3 ) 𝜌2 

(t ∕ m 3 ) 𝜇1 
(kN ∕ m 2 ) 𝜇2 

(kN ∕ m 2 )
0.001 3 1.7 1.4 2.1 126,000 756,000 

Table 4 

Site specifications and input wave in a 2D example (a semicircular alluvial 

valley). 

A max (m) f p (Hz) 𝑡 0 ( s ) 𝜌1 
(
𝑡 ∕ 𝑚 3 

)
𝜌2 
(t ∕ m 3 ) 𝜇1 

(kN ∕ m 2 ) 𝜇2 
(kN ∕ m 2 )

0.001 3 1.7 2 
3 
𝜌2 2.1 1 

6 
𝜇2 756,000 
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a  
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F  
here f p , t 0 , and t respectively are the dominant frequency, time shift

arameter, and time real axis. Based on Eq. (24) , displacements of the

ree field of ground surface u ff are calculated by Eq. (25) . 

 

𝑓𝑓 ( 𝑥, 𝑦, 𝑡 ) = 𝑢 𝑖𝑛𝑐 ( 𝑥, 𝑦, 𝑡 ) + 𝑢 𝑟𝑒𝑓 ( 𝑥, 𝑦, 𝑡 ) (25)

here u inc and 𝛼inc respectively are displacement and the phase of inci-

ent wave in r inc position and t time; u ref and 𝛼ref respectively are dis-

lacement and reflected wave phase from ground surface in the position

f r ref and time of t; A max is the maximum displacement of time history;

 is Heaviside function; and c is the velocity of the shear wave. 

 

𝑖𝑛𝑐 ( 𝑥, 𝑦, 𝑡 ) = 𝐴 max 

[ 
1 − 2 

( 

𝜋𝑓 𝑝 

2 
𝛼𝑖𝑛𝑐 

) 2 ] 
𝑒 
− 
(
𝜋𝑓 𝑝 

2 𝛼
𝑖𝑛𝑐 
)2 
𝐻 

( 

𝑡 − 

𝑟 𝑖𝑛𝑐 

𝑐 

) 

 

𝑟𝑒𝑓 ( 𝑥, 𝑦, 𝑡 ) = 𝐴 max 

[ 
1 − 2 

( 

𝜋𝑓 𝑝 

2 
𝛼𝑟𝑒𝑓 

) 2 ] 
𝑒 
− 
(
𝜋𝑓 𝑝 

2 𝛼
𝑟𝑒𝑓 

)2 
𝐻 

( 

𝑡 − 

𝑟 𝑟𝑒𝑓 

𝑐 

) 

𝑖𝑛𝑐 = 𝑐 
(
𝑡 − 𝑡 0 

)
+ 𝑟 𝑖𝑛𝑐 

 

𝑖𝑛𝑐 = − sin 𝜃𝑥 + cos 𝜃𝑦 
𝑟𝑒𝑓 = 𝑐 

(
𝑡 − 𝑡 0 

)
+ 𝑟 𝑟𝑒𝑓 

 

𝑟𝑒𝑓 = − sin 𝜃𝑥 − cos 𝜃𝑦 (26)

In order to model one-dimensional site, two issues should be con-

idered: first, in this example, rigid boundary conditions should be pro-

ided so that the displacements of the time history of the points on the

oundary are identical and in accordance with the motion of input shear

aves. Second, the dimensions of the site should be chosen in a way that
200 
here is a sufficient distance between the lateral boundaries to prevent

he error from the reflected waves at the central point of the ground

urface. 

To simulate rigid boundary conditions, a site with a width of 6000 m

nd a depth of 50 m is assumed, where the maximum displacement of

ime histories, dominant frequency, and time shift parameters are con-

idered to be 0.0001 m, 2.4 Hz, and 0.9 s, respectively ( Fig. 4 ). Next,

everal shear wave ratios are tested between half-space and alluvial ma-

erials ( 𝑐 2 
𝑐 1 
) . This test is carried out to the extent that the results of the dis-

lacement of the time history of the point on the boundary match with

he displacement of the time history of the input wave. Table 1 presents

he specifications of the materials and the tests list. 

To compare the results of the test, point P is selected on the bottom

oundary of the site ( Fig. 3 ). The results of displacement time-history of

his point is shown in Fig. 5 . As can be seen, an increase in the velocity

atio results in overlapping boundary point displacement on displace-

ent time-history of input wave and, finally, in a velocity ratio of 300,

he rigid boundary condition is met. 

To determine the dimension of the one-dimensional site, the anal-

sis results of two models with dimensions of 5000 m ×50 m and

000 m ×50 m are compared, such that each model is meshed with 200

nd 240 elements of 8 nodes in the FE and 104 and 124 elements of

econd-order 3-nodes in the BE. This analysis is conducted to select

he sufficient distance between the lateral boundaries and to simulate

he one-dimensional ground conditions. In this analysis, the time step

s 0.0125 s and the number of the time step is assumed to be 320. In

ig. 6 , the displacement time-history derived from the analysis of the
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Fig. 8. The geometry and meshing of the 2D site (a rectangular 

section). 

Fig. 9. The displacement time history of four-points on the ground surface with the present method and half-plane BEM. 
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wo models are plotted on the central point on the ground surface.

wo obtained curves overlap completely, indicating that the distance

etween the two lateral boundaries is sufficient to simulate the one-

imensional site. Then, the width of 6000 m was considered to analyze

he one-dimensional site. 

At this stage, as described in the above paragraph, a 6000 m ×50 m

ite is examined. In the analysis of this site, 240 8-node elements

ith 50 m ×25 m dimensions in FE area and 124 second-order 3-node

lements are used in BE area (totally 965 nodes). The time step and

he number of steps are assumed to be 0.0125 s and 320, respec-
201 
ively. In Table 2 , the specifications of materials and input wave are

resented. 

To verify the obtained results, the half-plane BEM [27] and RBRFEM

10] is used and compared with the central point on the ground surface

point O). As shown in Fig. 7 , there is a good agreement between the re-

ults of this point’s displacement time-history in both methods. Another

oint that should be addressed in solving this problem is the confine-

ent of wave in the valley in the very high-velocity ratio due to the

ction of the site as a cavity, which causes obtaining undamped results

 Fig. 7 ). 
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Fig. 10. The geometry of the two-dimensional site (a 

semicircular alluvial valley). 

Fig. 11. Time-domain displacement of two points of the semi-circle alluvial valley: (a) top of the centerline (Point A); (b) edge of the valley (Point B). 
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.2. A rectangular alluvial valley 

In order to evaluate the efficiency and accuracy of this program in

he analysis of two-dimensional problems, a rectangular 400 m ×200 m

lluvial valley is analyzed in half-space. The soil layer assumed in this

xample is homogeneous and uniform, with characteristics presented in

able 3 . 
202 
In the analysis of this site, 200 8-node elements with 20 m ×20 m

imensions in FE area and 40 second-order 3-node elements are used in

E area (totally 661 nodes). The time step and the number of steps are

ssumed to be 0.004 s and 3750, respectively. Fig. 8 shows the geometry

nd meshing of this site. 

In this section, to validate the results, half-plane BEM [27] is used

nd the results are compared in 4 points on the ground surface ( x = 0, b,
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Fig. 12. Normalized displacement amplitude on the surface of the semi-circle alluvial valley and adjacent to it: (a) ( 𝜂 = 1) and (b) ( 𝜂 = 2). 

Fig. 13. Time-domain displacement of two points of the semi-circular canyon: (a) the canyon floor (Point A); (b) edge of the valley (Point B). 
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b, 3b, where b is half width of the valley). As shown in Fig. 9 , there is

 good agreement between the results of the time history of these points

n both methods. 

.3. A semicircular alluvial valley 

In this two-dimensional example, a semicircular alluvial valley with

 radius of 200 m, located in a half-space, is analyzed. The soil layer as-

umed in this example is homogeneous and uniform, with specifications

resented in Table 4 . 

In the analysis of this site, 240 8-node elements in FE region and 60

econd-order 3-node elements in BE region and a total of 811 nodes are
203 
sed. The time step in problem-solving is 0.01 s. Fig. 10 presents the

eometry and meshing of this site respectively. 

In this section, the verifications of the results are done in two do-

ains of time and frequency. In the time domain, the displacement

ime-history of the central point (A) and the valley edge (B) ( Fig. 10 ) is

ompared to half-plane BEM [27] , which shows a good agreement be-

ween the results ( Fig. 11 ). To verify the accuracy in converted space,

he dimensionless frequency 𝜂 = 

𝜔𝑏 

𝜋𝑐 
is defined; where 𝜂 is dimension-

ess frequency, 𝜔 is the angular frequency of the incident wave, c is the

elocity of the shear wave, and b is the radius of the semi-circle. The

ormalized displacement amplitude of the site surface and its adjacent

egion is plotted in two non-dimensional frequencies 1 and 2 in Fig. 12 .
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Fig. 14. Normalized displacement amplitude on the surface of the semi-circular canyon and adjacent to it: (a) ( 𝜂 = 1) and (b) ( 𝜂 = 2). 

Table 5 

The CPU times from executing time-domain half-plane FE/BE codes with an Intel (R) Core (TM) i5 CPU 7400 at 3.00 GHz and 16 GB RAM. 

Examples Dimensions (m) Half-Plane FE/BE Half-plane BEM Full-plane BEM 

The number of 

FEM elements 

The number of 

the half - plane 

BEM elements 

Time step 

(s) 

Number 

of steps 

Total time of 

analysis (s) 

Total time of 

analysis (s) 

The number of 

elements 

Total time of 

analysis (s) 

One-dimensional W6000 × H50 240 124 0.0125 320 277.662 1648.075 – –

Rectangular 

alluvial valley 

W400 × H200 200 40 0.004 3750 1061.602 766.107 – –

Semicircular 

alluvial valley 

R200 240 60 0.01 1000 356.031 330.165 – –

Semicircular 

canyon 

R200 240 60 0.01 500 162.925 58.143 123 11,238.113 

The W and H are the width and depth of the rectangular valley, respectively. 

The R is the radius of the semicircular valley. 
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I  
ormalized displacement amplitude is defined as the ratio of the Fourier

mplitude of the total motion obtained by the hybrid method to the

ourier amplitude of the incident motion [29] . The obtained results are

ompared with the results presented by Trifunac [63] , Manoogian [64] ,

hen et al . [65] and the half-plane BEM [27] . As can be seen, the results

or both frequencies have a high accuracy. 

.4. A semicircular canyon 

In this example, a semi-circular canyon with a radius of 200 is an-

lyzed. In order to model the canyon, the shear modulus of region 1 is

onsidered to be 10 8 times smaller than region 2( 𝜇1 = 𝜇2 ×10 − 8 ) [65] .

he rest of the materials and input wave specifications are assumed to

e the same as Section 4.3 . The results of this example are plotted in

ime and frequency domain. In the time domain, two points on the floor

A) and the edge (B) of the canyon are selected. Then, the displacement

ime-history of these points is calculated using the hybrid method and

alf-plane BEM [27] , which as can be seen in Fig. 13 , are completely

verlapping. 

In order to verify the results in the frequency domain, the normal-

zed displacement amplitude of the canyon surface and its adjacent re-

ion is calculated in two non-dimensional frequencies 1 and 2. Then the

btained results are compared with the results presented by Trifunac

66] , Manoogian [64] , Chen et al . [65] , the half-plane BEM [27] and
204 
ull-plane BEM [27] in Fig. 14 . As can be seen, there is an acceptable

greement between the results. 

. Analysis time 

In this section, the half-plane FE/BE software is evaluated for the

uration of the analysis of the issues. The CPU time for each of the

xamples is measured in seconds and is presented in Table 5. Then, To

rove the efficiency of the present method, its analysis time is compared

ith the full-plane BEM [27] and half-plane BEM [27] for the semicircu-

ar canyon example. The results are added to the Table 5 . As the results

how, the duration of the analysis is desirable, which can be attributed

o the reduction of the boundary elements due to the discretization of

he only boundary of the feature using the half-plane BEM. This com-

arison is also performed for other examples using half-plane BEM [27] ,

hich shows that the present method has a good performance. 

. Conclusions 

In the current paper, an advanced hybrid formulation (half-plane FE/

E) was presented by which the seismic behavior of homogeneous and

eterogeneous topographic features were evaluated under SH waves.

n this method, the topographic feature was divided into two bounded
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nd unbounded domains. The bounded domain involved alluvial mate-

ials and was modeled using the conventional FEM, which is a suitable

ethod to model the finite domain. The unbounded domain involved

alley-shaped feature in semi-space medium is modeled using the half-

lane BEM. The advantages of the half-plane BEM are that only the basin

nterface needs to be meshed, thereby reducing the number of mesh el-

ments and simplifying the model. Then, two methods were compatible

or combining the governing equations, and the governing equations of

he BEM were converted to FEM equations. Subsequently, the equations

ere solved in the framework of the FEM, and the unknowns were calcu-

ated. In the next step, the formulation was run in computer codes, and

he accuracy, efficiency, and ability of this formulation were illustrated

y analyzing the response of some different sites (a one-dimensional

ite, a two-dimensional rectangular alluvial site, the semi-circle alluvial

alley and semi-circle canyon). The results were compared to those of

he published works indicating that the models were very simple, and

he present method had the accuracy and the appropriate duration of

he analysis. This method can also be used as an efficient method for

onlinear analysis of the seismic response of alluvial sites and the seis-

ic problems of soil-structure interaction due to the reduction of the

oundary elements, consequently, reducing the program run-time and

rror waves. 
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