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S U M M A R Y
This paper extends a method, which has been previously called half-plane time-domain
boundary element method (BEM) and successfully applied to 2-D concave topographies,
for analysing convex irregular sites subjected to vertically as well as obliquely propagating
incident SH waves. While using this method, only interface and surface of the hill needed
to be discretized. During the use of the proposed substructuring process and dividing the
problem into two domains of a half-space and a surface topography totally above the half-
space, the method was employed for each of them. After satisfying continuity and boundary
conditions, the problem was finally solved as an original coupled domain. To validate the pre-
sented method, three different examples were examined and the results were compared with
those of the published works. A semi-circular cylindrical hill, a Gaussian-shaped ridge and a
semi-circular hill joined by an inside concentric full/semi-circular cavity were investigated due
to antiplane waves as Ricker wavelets type. The results showed that not only capability and
efficiency of the method were very good but also much shorter run time than that of full-plane
BEM formulation was obtained. The proposed method can be practically used to analyse site
response in substituting traditional time-domain BEM as well.

Key words: Site effects; Computational seismology; Wave scattering and diffraction; Wave
propagation.

1 I N T RO D U C T I O N

Recent earthquakes as well as their subsequent events have shown that amplitude of ground motion not only is related to earthquake intensity
but also depends on the site geometry. Technically speaking, there are generally three different methods for the analysis of topographic effects
which include analytical, semi-analytical and numerical ones (Sanchez-Sesma et al. 2002). Although analytical and semi-analytical methods
have better accuracy than numerical approaches, various types of arbitrarily shaped topographic features cannot be applied for modelling in
real world. It results in the development of numerical methods which have good flexibility. Among the numerical methods, which can be
commonly divided to volumetric, boundary and mixed, special attention has been given to boundary element method (BEM) during recent
two decades. Due to the fact that this method only discretizes boundaries of the media and automatically satisfies the Sommerfeld’s radiation
conditions of waves at infinity, its application for analysing the infinite and semi-infinite continuous media is really suitable (Beskos 1997).

Although boundary element formulation for a linear elastic medium has been developed in both time and frequency domains, non-linear
analysis of different problems in combination with other numerical methods, analysis of problems with time-dependent geometry and also
obtaining real values are only possible by the assistance of step-by-step process in the former. Perhaps, Friedman & Shaw (1962) could
be known as pioneer researchers in the use of time-domain BEM for antiplane wave scattering problems. Cole et al. (1978) were able to
present the first form of full-plane time-domain BEM approach together with its scalar time-convoluted kernels. But, due to low precision of
their displacement kernels, they have not been developed. Mansur & Brebbia (1982a,b) introduced a general full-plane time-domain BEM
for antiplane elastodynamic problems including displacement and traction time-convoluted kernels. Because of their consideration of the
Heaviside function in the extraction of formulations, their results have been reported in terms of different wave front positions. To follow
Mansur’s studies, Demirel & Wang (1987), Dominguez (1993), Yu et al. (2000) and Soares & Mansur (2009) have manages to improve the
full-plane time-domain BEM and demonstrate a better view for them. In this regard, the full-plane time-domain BEM approach presented by
Israil & Banerjee (1990a) had the most stylish results until that time. These researchers, unlike the previous authors and regardless of the
Heaviside function, were able to extract antiplane kernels in a condensed closed form. Later, Kamalian et al. (2003) modified their in-plane
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kernels (Israil & Banerjee 1990b) and applied them in time-domain BEM code for analysing different geotechnical earthquake problems
(Kamalian et al. 2006, 2007, 2008a,b). Recently, a half-plane time-domain BEM approach as well as its condensed closed-form half-plane
time-convoluted kernels were presented by Panji et al. (2013a) and used for investigating seismic behaviour of concave surface topographies
joined by embedded cavities (Panji et al. 2013b,c).

Despite the fact that solving the hill problems has been considerable for he researchers due to propagating incident SH waves either with
the assistance of analytical methods (Sabina & Willis 1975; Yuan & Men 1992; Yuan & Liao 1996; Lee et al. 2006; Tsaur & Chang 2009;
Jaramillo et al. 2013, for single topography effects and Lee et al. 2004; Liang et al. 2004; Liu et al. 2010, for multiple topography effects)
or by semi-analytical techniques (Bouchon 1973; Bard 1982; Geli et al. 1988; Zhou & Chen 2006, 2008; Chen et al. 2012), using BEM
approaches has been rarely observed in the literature. Sills (1978) developed an indirect frequency-domain BEM and applied it for analysing
the Gaussian-shaped hills. In the use of a boundary method, Sanchez-Sesma et al. (1982) investigated the behaviour of Gaussian-shaped
ridges subjected to oblique SH wave. Using indirect frequency-domain BEM, Sanchez-Sesma & Campillo (1991) analysed arbitrarily shaped
convex topographies to P and SV waves. Mogi & Kawakami (2007) presented a sinusoidal ground model with direct frequency-domain BEM
approach. Finally, Kamalian et al. (2008a,b) were able to analyse the elevated topographies by means of direct time-domain BEM.

Although it is possible for BEM approaches to be formulated in a full-plane or half-plane domain (Dominguez & Meise 1991), more
studies have been conducted by the former one due to the simplicity of its formulations. All the above-mentioned works in the previous
paragraph have been also done based on full-plane BEM approach. In the prepared models established on the full-plane BEM, not only
topography surface but also a wide area of smooth ground surface from each of its sides must be discretized to approximately satisfy
stress-free boundary conditions (Kamalian et al. 2006; Ge & Chen 2007, 2008). Besides, to avoid numerical integration difficulties, a series of
virtual elements called ‘enclosing elements’ need to be defined to close the truncated domain (Ahmad & Banerjee 1988), which, in addition
to complicating the models, also considerably increase analysis time (Kamalian et al. 2008a,b).

On the other hand, if the considered problem is completely solved in a half-space using half-plane BEM approaches, the dimension of
elements and their runs time are subsequently reduced, due to focusing the elements only on the topography surfaces (Panji et al. 2013a). In
addition, the stress-free boundary conditions will be also satisfied exactly on the ground surface. The half-plane BEM topography models
which rough surfaces are always below the ground, such as valley-shaped topographies and underground cavities, are capable to be solved
straightforwardly. Meanwhile, some studies can be found for SH waves scattering in the literature (Wong & Jennings 1975; Sanchez-Sesma
& Esquivel 1979; Dravinski 1982; Ohtsu & Uesugi 1985; Reinoso et al. 1993; Ausilio et al. 2008 in frequency domain and Hirai 1988,
Belytschko & Chang 1988 and Panji et al. 2013a in time domain). Nonetheless, solving convex topographies by means of half-plane BEM
approach is not possible in this way and use of a proposed separation technique is thus required. To the best knowledge of the present authors,
the convex topography solution completely in a half-space asking for the assistance of direct BEM approaches not only in the time but also
in the frequency domain has not been conducted so far.

The authors previously proposed a half-plane time-domain BEM approach to investigate homogenous topography behaviour including
concave shaped and subsurface irregularities. In this paper, the mentioned formulations were developed for convex topographies and applied
in a time-domain BEM code known as DASBEM. To this end, first, using the proposed substructuring process, the convex topography (hill)
was divided into two domains: the first one including a homogeneous half-space with its interface with hill as an open media model and
the second one containing a surface topography totally above the half-space as a closed media model. Then, both domains were modelled
based on half-plane time-domain BEM formulation. After forming influence coefficients of the required matrices for each domain, they
were assembled into a global matrix, taking continuity conditions of the interface into account. Eventually the equations could be solved by
applying the boundary conditions for an original coupled domain. To investigate applicability and efficiency of the proposed approach, three
practical examples were solved and compared with those of published works. A semi-circular cylindrical hill, a Gaussian-shaped ridge as well
as a semi-circular hill joined by an inside concentric full/semi-circular cavity were considered subjected to obliquely propagating incident
SH waves as the Ricker wavelets type. The main objective of this paper was to demonstrate simple models for convex topographies in use
of the presented half-plane time-domain BEM while considerably reducing analysis time compared with traditional full-plane models and
accurately obtaining the solutions.

2 H A L F - P L A N E T I M E - D O M A I N B E M

2.1 Governing equations

For a homogeneous linear elastic medium according to Fig. 1, 2-D scalar wave equation and boundary conditions on the surface are respectively
as follows:

∂2u(x, y, t)

∂x2
+ ∂2u(x, y, t)

∂y2
+ b (x, y, t) = 1

c2

∂2u(x, y, t)

∂t2
(1)

and

μ
∂u(x, y, t)

∂n

∣∣∣∣
y=0

= 0, (2)
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Analysing convex topography by half-plane BEM 593

Figure 1. A definition sketch for solving the combined topography problems using half-plane time-domain BEM approach based on source image method and
substructuring process. IBE and BE indicate the interface and usual boundary elements, respectively.

where u(x, y, t) and b(x, y, t) are antiplane displacement and body force at point (x, y) and current time t , respectively, c is shear wave velocity
given by

√
μ/ρ, with μ as shear modulus and ρ as mass density, and n is normal vector for the ground surface. Without considering boundary

conditions (eq. 2), eq. (1) can be solved alone to obtain the full-plane fundamental solutions. Transient antiplane full-plane fundamental
solutions can be found in Morse & Feshbach (1953) and Eringen & Suhubi (1975). The singular solution of governing equation by satisfying
the boundary conditions as well as using image source approach results in the half-plane fundamental solutions. These solutions together
with its mathematical proof can be found in Panji et al. (2013a).

2.2 Boundary integral equations (BIEs)

After applying the weighted residual integral to eq. (1) and ignoring contributions from initial conditions and body forces, direct time-domain
BIE can be obtained as follows (Brebbia & Dominguez 1989, Dominguez 1993):

c (ξ ) u (ξ , t) =
∫

�

{∫ t

0
[u∗ (x, t ; ξ , τ ) · q (x, τ ) − q∗ (x, t ; ξ , τ ) · u (x, τ )] dτ

}
d�(x) (3)

u∗ and q∗ are half-plane time-domain displacement and traction fundamental solutions at position x and time t due to a unit antiplane
impulsive force in position ξ and preceding time τ , respectively; u and q are displacements and tractions of boundary, respectively. �(x)
denotes the boundary of body. c (ξ ) is the geometry coefficient which can be obtained in terms of internal angle of the corner (Dominguez
1993). The above BIE is governed for the problems under external loads. If the problems include the incoming waves, then, to satisfy the
stress-free conditions on the surface (eq. 2) with considering that total displacement can be decomposed into two parts containing the free
field displacement (u f f ) and the scattered wave field (usc.), eq. (3) must be modified as (Ohtsu & Uesugi 1985; Kawase 1988; Hadley et al.
1989; Reinoso et al. 1993):

c (ξ ) u (ξ , t) =
∫

�

{∫ t

0
[u∗ (x, t ; ξ , τ ) · q (x, τ ) − q∗ (x, t ; ξ , τ ) · u (x, τ )] dτ

}
d� (x) + u f f (ξ , t) , (4)

where u f f is the free field displacement of ground surface (without surface irregularities). Once the above equation is solved for all boundary
points on the topography, it is possible to determine responses for the rest of the considered points including smooth surface (y = 0) beyond
the topography as internal fields m. Thus, by placing the geometry coefficient of c (ξ ) equal to 1, the above equation can be rewritten as
follows:

um (ξ , t) =
∫

�

{∫ t

0
[u∗m (x, t ; ξ , τ ) · q (x, τ ) − q∗m (x, t ; ξ , τ ) · u (x, τ )] dτ

}
d� (x) + u f f.m (ξ , t) , (5)

where u∗m and q∗m are half-plane time-domain fundamental solutions for displacement and traction fields established on each of internal
points, respectively, and u f f.m is free field displacements that must be obtained for them.

2.3 Numerical implementation

For solving BIE (eq. 4) in the time domain, it is required for the time axis and geometry boundary to be discretized. In this regard, an analytical
process and a numerical scheme were considered for the former and latter.
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2.3.1 Temporal integration

To carry out the analytical temporal integration, after discretizing the time axis by N equal increments with duration �t (t = N�t) in the use
of linearly shaped functions, eq. (4) can be presented in the following way as a simplified form resulting from eliminating singularity terms
from wave fronts:

c (ξ ) uN (ξ ) =
N∑

n=1

∫
�

( [
U N−n+1

1 (x, ξ ) + U N−n
2 (x, ξ )

]
qn (x)

− [QN−n+1
1 (x, ξ ) + QN−n

2 (x, ξ )
]

un (x)

)
d� (x) + u f f.N (ξ ) , (6)

where un (x) and qn (x) are displacement and traction fields on the boundary, respectively, u f f.N stands for the free field displacement at time
t = N�t , and U N−n+1

1 (x, ξ ) + U N−n
2 (x, ξ ) and QN−n+1

1 (x, ξ ) + QN−n
2 (x, ξ ) denote the half-plane displacement and traction time-convoluted

kernels, respectively, as follows:

U N−n+1
1 + U N−n

2 = 1

2π

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎝

(N − n + 1) cos h−1 (N−n+1)c�t
r −

√
(N − n + 1)2 − ( r

c�t

)2
−2(N − n) cos h−1 (N−n)c�t

r + 2
√

(N − n)2 − ( r
c�t

)2
+(N − n − 1) cos h−1 (N−n−1)c�t

r −
√

(N − n − 1)2 − ( r
c�t

)2

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝

(N − n + 1) cos h−1 (N−n+1)c�t
r ′ −

√
(N − n + 1)2 − ( r ′

c�t

)2
−2(N − n) cos h−1 (N−n)c�t

r ′ + 2
√

(N − n)2 − ( r ′
c�t

)2
+(N − n − 1) cos h−1 (N−n−1)c�t

r ′ −
√

(N − n − 1)2 − ( r ′
c�t

)2

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

QN−n+1
1 + QN−n

2 = − 1

2π

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎝1

r

∂r

∂n

⎧⎪⎨
⎪⎩
√

(N − n + 1)2 − ( r
c�t

)2 − 2
√

(N − n)2 − ( r
c�t

)2
+
√

(N − n − 1)2 − ( r
c�t

)2
⎫⎪⎬
⎪⎭
⎞
⎟⎠

+

⎛
⎜⎝ 1

r ′
∂r ′

∂n

⎧⎪⎨
⎪⎩
√

(N − n + 1)2 − ( r ′
c�t

)2 − 2
√

(N − n)2 − ( r ′
c�t

)2
+
√

(N − n − 1)2 − ( r ′
c�t

)2
⎫⎪⎬
⎪⎭
⎞
⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (8)

where r and r ′ are the distance from the source and the image source to the receiver point, respectively (Panji et al. 2013a), and n is the
normal vector.

2.3.2 Spatial integration

All the calculations were conducted analytically until this part of the half-plane BEM formulation. To solve the spatial integral of eq. (6),
boundary of the body was required to be discretized in a numerical scheme. After meshing the boundaries by M elements in utilizing the
quadratic boundary elements, the above equation takes the following form:

c (ξ ) uN (ξ ) =
N∑

n=1

M∑
m=1

⎡
⎢⎢⎢⎣

{∫
�m

[
U N−n+1

1 [x (κ) , ξ ] + U N−n
2 [x (κ) , ξ ]

]
Nα (κ) |J | dκ

}
qn

α

−
{∫

�m

[
QN−n+1

1 [x (κ) , ξ ] + QN−n
2 [x (κ) , ξ ]

]
Nα (κ) |J | dκ

}
un

α

⎤
⎥⎥⎥⎦+ u f f.N (ξ ) (9)

in which M represents total number of boundary elements, �m stands for portion of the boundary to which element ‘m’ belongs, Nα (κ) is
quadratic shape functions in terms of local intrinsic coordinates of κ (α = 1, 2, 3) and J indicates Jacobian of transformation. Only in the
first time step, when the collocation point (source) is in the integration element (receiver), numerical integration has a simple singularity issue
(Panji et al. 2013a). In other cases, the integration can be carried out numerically using regular Gauss quadrature as well.

2.3.3 Time stepping algorithm

By taking spatial numerical integrals from eq. (9), the following matrix form can be obtained:

N∑
n=1

H N−n+1 {un} =
N∑

n=1

GN−n+1 {qn} + {u f f.N
}

(10)

in which H N−n+1 and GN−n+1 are the matrices, the elements of which are determined by integration over the boundary elements, {un} and
{qn} are vectors of boundary nodal quantities in the time step n.

{
u f f.N

}
is a matrix including free field displacements, which number of
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columns is equal to number of time steps. In this form of eq. (10), the solution is not possible and the boundary conditions need to be applied
in a numerical scheme for boundary nodes. After this procedure, eq. (10) takes the following soluble form:[

A1
1

] {
X N
} = [B1

1

] {
Y N
}+ {RN

}+ {u f f.N
}
, (11)

where
{

X N
}

and
{
Y N
}

are vectors of unknown and known boundary quantities, respectively,
[

A1
1

]
and

[
B1

1

]
are matrices, the columns of

which correspond to unknown and known boundary quantities, respectively, and need to be only computed in the first time step.
{

RN
}

denotes
effects of past dynamic history on the current time node N , presented as follows:

{
RN
} =

N−1∑
n=1

(
GN−n+1 {qn} − H N−n+1 {un}) . (12)

By solving eq. (11) in each time step, all unknown boundary quantities including displacement and traction fields are obtained.

3 S U B S T RU C T U R I N G P RO C E S S

The half-plane time-domain BEM approach shown in the above can be straightforwardly applied to obtain responses of topographies, the
rough surfaces of which are placed below the ground surface. To solve topographies which boundaries are completely above the surface
(convex topographies), a substructuring process was proposed. In this regard, as can be shown in Fig. 1, the convex topography must be divided
into two parts. The first part is a half-plane including all surface/subsurface rough boundaries (such as concave topographies, embedded
cavities, etc.) plus its interface with hill as an open domain model and the secondary part includes the mentioned interface together with
elevated boundary as a closed domain model.

3.1 Domain I: an open media model

This domain must be modelled according to an open media scheme using half-plane time-domain BEM formulation and source image
approach. Meshing direction must be appropriately applied to define the normal vector. As can be observed in Fig. 1, the model includes all
rough surfaces or subsurfaces except the convex boundary. By considering that there are effects of incoming waves as well as outgoing ones,
the discretized form of eq. (4) needs to be mentioned. After applying the half-plane BEM approach for Domain I, forming the considered
matrices as eqs (10) and (11) and differentiating the nodes at all surface/subsurface rough boundaries (denoted by subscript 1) from those on
the interface (denoted by subscript 12), the matrix form of this equation for time step N = n can be obtained as:

[
H1

12 H1
1

]⎧⎨
⎩

uN
12

uN
1

⎫⎬
⎭ =

[
G1

12 G1
1

]⎧⎨
⎩

q N
12

q N
1

⎫⎬
⎭+

⎧⎨
⎩

RN
12

RN
1

⎫⎬
⎭+

{
u f f.N

12

u f f.N
1

}
(13)

so:

{
RN

12

} =
N−1∑
n=1

(
GN−n+1

12

{
qn

12

}− H N−n+1
12

{
un

12

})
(14)

and

{
RN

1

} =
N−1∑
n=1

(
GN−n+1

1

{
qn

1

}− H N−n+1
1

{
un

1

})
, (15)

where uN
12 and q N

12 are displacements and tractions at the interface nodes for Domain I, respectively, uN
1 and q N

1 are displacements and tractions
at all surface/subsurface rough boundaries, respectively. RN

12 and RN
1 denote past dynamic history on the current time node N and u f f.N

12 and
u f f.N

1 indicate free field displacements for the interface nodes and all surface/subsurface rough boundaries, respectively.

3.2 Domain II: a closed media model

In the same way according to Domain I, this domain can be also modelled using half-plane time-domain BEM approach. But, there are some
differences including the absence of free field motion in the equations (in the use of eq. 3 as BIE) and the direction of discretizing in order to
close the domain. Thus, after conducting them, forming the matrices and also differentiating the nodes on the interface (denoted by subscript
21) from those on the convex boundary (denoted by subscript 2), the matrix form of BIE for time step N = n can be written as:

[
H1

21 H1
2

]⎧⎨
⎩

uN
21

uN
2

⎫⎬
⎭ =

[
G1

21 G1
2

]⎧⎨
⎩

q N
21

q N
2

⎫⎬
⎭+

{
RN

21

RN
2

}
(16)

so:

{
RN

21

} =
N−1∑
n=1

(
GN−n+1

21

{
qn

21

}− H N−n+1
21

{
un

21

})
(17)
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and

{
RN

2

} =
N−1∑
n=1

(
GN−n+1

2

{
qn

2

}− H N−n+1
2

{
un

2

})
, (18)

where uN
21 and q N

21 are displacements and tractions at the interface nodes of Domain II, respectively, uN
2 and q N

2 are displacements and tractions
on the convex boundary, respectively. RN

21 and RN
2 denote past dynamic history for the interface and hill surface nodes, respectively.

3.3 Assembling

To solve the problem and obtain the unknown fields, two series of above equations must be assembled in order to make an original coupled
domain. For this purpose, it is required to satisfy continuity conditions at the interface. Compatibility and equilibrium conditions at the
interface are as follows, respectively:

uN
12 = uN

21 (19)

μ1q N
12 = −μ2q N

21 (20)

where μ1and μ2 are shear modules for Domains I and II, respectively. By considering that the problem needs to be homogeneously solved, it
is assumed that μ1 is equal to μ2. After applying the continuity conditions at the interface, the matrix form of assembled BIEs can be written:

⎡
⎢⎣ H1

12 H1
1 0 −G1

12

H1
21 0 H1

2 G1
21

⎤
⎥⎦
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uN
12

uN
1

uN
2

q N
12

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
[

G1
1 0

0 G1
2

]⎧⎨
⎩

q N
1

q N
2

⎫⎬
⎭+

{
RN

(1)

RN
(2)

}
+
{

u f f.N
(1)

0

}
(21)

in which:

RN
(1) =

{
RN

12

RN
1

}
(22)

RN
(2) =

{
RN

21

RN
2

}
(23)

u f f.N
(1) =

{
u f f.N

12

u f f.N
1

}
, (24)

where all variables considered in the above equations are the same as those observed in eqs (13) to (18). Boundary conditions on the convex
surface as well as all surface/subsurface rough boundaries need to be satisfied in order to solve eq. (21). By considering that boundary
conditions governing seismic problems are always of stress-free type (q N

1 = q N
2 = 0), eq. (21) can be rewritten in a simplified form as

follows:

⎡
⎢⎣ H1

12 H1
1 0 −G1

12

H1
21 0 H1

2 G1
21

⎤
⎥⎦
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uN
12

uN
1

uN
2

q N
12

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=
⎧⎨
⎩

RN
(1)

RN
(2)

⎫⎬
⎭+

{
u f f.N

(1)

0

}
. (25)

After solving the above equations in each time step, all unknown quantities, such as displacements and tractions at the interface as well as
displacements at all nodes belonging to convex and surface/subsurface rough boundaries, can be easily obtained. To find the responses at
internal point m beyond the topography on the smooth ground surface, the discretized form of eq. (5) that is symbolized for Domain I can be
written as:

{
uN .m

} =
N∑

n=1

([
G〈N−n+1〉.m

12 G〈N−n+1〉.m
1

]{ qn
12

qn
1

})
−

N∑
n=1

([
H 〈N−n+1〉.m

12 H 〈N−n+1〉.m
1

]{ un
12

un
1

})
+
{

u f f.N .m
12

u f f.N .m
1

}
, (26)

where uN .m is displacement at internal point m. All parameters of eq. (26) correspond to eq. (13) so that only elements of their matrices
depend on the location of internal points and boundary nodes. It is mentioned that, to obtain the responses at internal points, it is possible to
use discretized form of eq. (16) for Domain II.
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Analysing convex topography by half-plane BEM 597

Figure 2. A definition sketch and schematic half-plane BEM model for a semi-circular cylindrical hill due to obliquely propagating incident SH waves.

4 VA L I DAT I O N E X A M P L E S

The above-proposed half-plane time-domain BEM approach was implemented in a developed BE code called DASBEM and applied to
investigate behaviour of convex topographies. Previously, capability and efficiency of this method were successfully verified for analysing
concave surface topographies as well as embedded cavities (Panji et al. 2013a). In this section, its potentiality is presented for evaluating
convex topographies. Three different known examples are solved and their results are compared with those of the published works.

4.1 A semi-circular cylindrical hill

In the first example, a semi-circular cylindrical hill subjected to obliquely propagating incident SH waves was considered, as in Fig. 2. The
excitation wave’s type was assumed according to Ricker wavelets function (Ricker 1953; Takemiya & Fujiwara 1994) as follows:

f (t) =
[
1 − 2

(
π f p(t − t0)

)2]
e−(π f p (t−t0))2

(27)

in which f p and t0 are predominant frequency and time-shift parameter, respectively. According to the above function, the oblique antiplane
displacements of incident SH waves are as:

uinc. (x, y, t) = amax · f
(
αinc.

)
H

(
t − r inc.

c

)
, (28)

where amax and H (.) denote the maximum displacement time history and Heaviside function, respectively, and argument αinc. is phase of
incident waves in location r inc. and time t . c is also shear wave velocity. For satisfying the following stress-free conditions on the ground
surface:

∂u(x, y, t)

∂n
= ∂u f f (x, y, t)

∂n
+ ∂usc(x, y, t)

∂n
= 0, (29)

where u f f is free field displacement of ground surface and usc. is contribution of scattered waves (can be computed by the proposed method);
it is necessary to consider a reflected waves field with the reverse phase as follows:

uref . (x, y, t) = amax · f
(
αref .

)
H

(
t − r ref .

c

)
, (30)

where uref . (x, y, t) is the reflex displacement and αref . denotes the phase of reflected waves in location r ref . and time t . To obtain free field
displacements denoted in eq. (4), the following can be written after adding eqs (28) and (30):

u f f (x, y, t) = amax ·

⎛
⎜⎜⎜⎝
[

1 − 2
(

π f p

c αinc.
)2
]

e
−
(

π f p
c αinc.

)2

H
(
t − r inc.

c

)
+
[

1 − 2
(

π f p

c αref .
)2
]

e
−
(

π f p
c αref .

)2

H
(

t − r ref .

c

)
⎞
⎟⎟⎟⎠ (31)

in which:

αinc. = c (t − t0) + r inc.; r inc. = − sin θ.x + cos θ.y, (32)

and

αref . = c (t − t0) + r ref .; r ref . = − sin θ.x − cos θ.y, (33)

where u f f (x, y, t) is free field displacement at coordinate (x, y) and time t . θ indicates the angle of incident waves, as in Fig. 2. To see
stability of the proposed method versus changing the time step, coefficient β is measured as follows (Dominguez 1993):

β = c�t

�l
, (34)
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Figure 3. Transient response of the crest of semi-circular cylindrical hill subjected to oblique SH waves with three incidence angles: (a) 0◦; (b) 45◦ and (c) 90◦.
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Analysing convex topography by half-plane BEM 599

Figure 4. Normalized displacement amplitudes on the surface of semi-circular cylindrical hill at dimensionless frequency of 1.0 for the incidence angles: (a)
0◦ and 30◦; (b) 60◦ and 90◦.

where c, �t and �l are shear wave velocity, time step and distance of nodes, respectively. For time stepping analysis of elastodynamic
problems with uniform meshing, it is recommended for this factor to be considered close to 1.0 (Dominguez & Gallego 1991). In this regard,
by assuming shear wave velocity and nodes’ distance of equal to 800 m s–1 and 20 m, respectively, the response convergence was investigated
in three different time steps (0.025, 0.020 and 0.015 s). Hereby, the coefficient β had quantities of 1.0, 0.8 and 0.6, respectively. The
predominant frequency, time-shift parameter and maximum amplitude of Ricker wavelet were equal to 3 Hz, 1.0 s, and 0.001 m, respectively.
The results can be observed in Fig. 3. In this figure, the transient antiplane response of semi-circular hill apex is shown due to obliquely
propagating incident SH waves including angels of 0◦, 45◦ and 90◦. As can be seen, stability of the method was favourable in different time
steps. Therefore, to minimize the run time, time step was considered equal to 0.025 s in this example and the two next ones.

As can be observed in Fig. 2, the semi-circular hill was divided into two parts; a half-plane with the interface and a hill as the closed
model. Taking nodes’ interval of 20 m into account, the interface and exterior surface of the hill were discretized by 19 and 31 nodes,
respectively. Twenty internal points were assigned to each side of the hill on the ground surface. The Ricker wavelet characteristics as well as
time step were assumed according to the material of the previous paragraph. As shown in Fig. 2, in the use of half-plane time-domain BEM
approach for the convex topography, the interface and hill surface are only necessary to be discretized.

To compare the results with those of the published works in the transformed domains, the dimensionless frequency needs to be defined
as follows:

η = ωb

πc
(35)

in which η is dimensionless frequency, ω is angular frequency of incident wave, b is half-width of the hill and c is shear wave velocity.
In addition, normalized displacement amplitude is mostly used by researchers to present their results and it can be defined as ratio of the
Fourier amplitude of the total motion to the Fourier amplitude of the input motion (denoted by |u|). For semi-circular cylindrical hill problem,
Sills (1978) presented a numerical response using indirect frequency-domain full-plane BEM approach and Yuan & Men (1992) and Tsaur
& Chang (2009) obtained analytical solutions in terms of wave function expansion. In Fig. 4, normalized displacements’ amplitude of the
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Figure 5. Normalized displacement amplitudes of the crest of semi-circular cylindrical hill versus η for the incidence angles: (a) 0◦ and 30◦; (b) 60◦ and 90◦.

ground surface in the range of −4b ≤ x ≤ 4b is shown due to oblique incident SH waves including 0◦, 30◦, 60◦ and 90◦ at dimensionless
frequency of 1.0 and compared with the mentioned solutions. As can be seen, the agreement with others was excellent and accuracy of the
results was acceptable.

To demonstrate precision of the responses at different frequencies, Fig. 5 is presented. In this figure, displacements of the hill apex are
presented versus dimensionless frequencies from 0.0 to 3.0. As can be observed, accuracy was favourable at all wave’s angles. Capability of
the proposed method at high frequencies can be also observed in Fig. 6. This figure displays normalized displacement amplitude of ground
surface at dimensionless frequency of 5.0 for different wave angles and compares the present results with an analytical response. The results
of Lee et al. (2006) were considered in this regard. They reported an improved analytic wave series solution for the semi-circular hill problem.
As can be seen, the agreement was very good in a wide area of the surface.

One of the important topics in the BE analysis is the relation between node’s distance and incident frequency. According to the assumed
values for this example and the next ones, four segments per SH wavelength was proposed to analyse the problems by the half-plane time-
domain BEM. In the other words, an acceptable response can be demonstrated in the dimensionless frequency of 5.0 (or actual frequency
10 Hz) by selecting nodes intervals less than λ/4 (λ is wavelength given by c/ f , with c as shear wave velocity and f as actual frequency).
For analysing a semi-circular valley using indirect full-plane BEM, Sanchez-Sesma & Campillo (1991) have suggested 15 segments per
SV wavelength to obtain the stable solution at dimensionless frequency of 2.0, which it is remarkable compared to the present results. To
determine the responses at higher dimensionless frequencies, for example at dimensionless frequency of 10, it is possible by reducing node’s
distance to 10 m.

4.2 A Gaussian-shaped ridge

Applicability of a numerical solution can be considerably appreciated when other methods are not able for their modelling. A Gaussian-shaped
ridge with the following function perhaps can be only solved numerically:

y = h

[
1 −

( x

b

)2
]

e−3( x
b )2

, (36)
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Analysing convex topography by half-plane BEM 601

Figure 6. Normalized displacement amplitudes on the surface of semi-circular cylindrical hill at η = 5.0 compared with the results of Lee et al. (2006) for the
incidence angles: (a) 0◦; (b) 30◦; (c) 60◦; (d) 90◦.

Figure 7. A definition sketch and schematic half-plane BEM model for a Gaussian-shaped ridge due to obliquely propagating incident SH waves.

where the curve is defined for |x | ≤ b and y = 0 in the case of |x | > b. h is height of the symmetrical ridge and b is half-width of the base.
The model of the ridge is shown in Fig. 7. As can be observed, using half-plane BEM approach, only the ridge surface and its horizontal base
need to be discretized. Here, according to what was considered by Sanchez-Sesma et al. (1982), three incident angles of 0◦, 45◦ and 90◦ and
three aspect ratios (h/b) equal to of 0.25, 0.50 and 0.75 were assumed. The interface was meshed by 19 nodes and the surface of the ridge was
interrupted by 25, 21 and 15 nodes for the aspect ratios of 0.75, 0.50 and 0.25, respectively. The number of 20 internal points was considered
on each side of the ridge on the smooth surface. Specifications of the Ricker wavelet were assumed similar to the previous example.

Fig. 8 shows normalized displacement amplitude on the surface of the ridges with different aspect ratios as well as various incident angles
at dimensionless frequency of 0.5 and compares the results with numerical solution of Sanchez-Sesma et al. (1982). For solving Gaussian-
shaped ridges, these researchers (Sanchez-Sesma et al. 1982) used an indirect boundary method in the frequency domain. Efficiency and
capability of the presented method are completely detectable in Fig. 8, even for modelling these types of topography geometries.

4.3 A semi-circular hill joined by an inside concentric full/semi-circular cavity

As can be seen in two previous examples, half-plane BEM approach was able to model single convex topography. In this example, the
potential of the method will be displayed for preparing those topography models that have multiple site effects. Therefore, a semi-circular
cylindrical hill joined by an inside concentric full/semi-circular cavity was considered subjected to obliquely propagating incident SH waves
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Figure 8. Normalized displacement amplitudes on the surface of Gaussian-shaped ridges with different aspect ratios at η = 0.5 compared with the results of
Sanchez-Sesma et al. (1982) for the incidence angles: (a) 0◦; (b) 45◦; (c) 90◦.

with different angles. Fig. 9 shows geometry of the models. First, the model of the hill with full-circular cavity was investigated and, next,
semi-circular cavity case was discussed.

After separating the problem to two domains, the model was divided to a valley-shaped open medium and a half-cylinder-shaped closed
medium (Fig. 9). By considering three different shape ratios (a/b) equal to of 0.20, 0.40 and 0.60, the models were elaborated totally
by 57, 65 and 73 nodes, respectively. Accordingly, numbers of 16, 12 and 8 nodes were assigned to their interfaces, respectively, and the
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Figure 9. A definition sketch and schematic half-plane BEM model for a semi-circular cylindrical hill joined by an inside concentric full/semi-circular cavity
due to obliquely propagating incident SH waves.

Figure 10. Normalized displacement amplitudes on the surface of a semi-circular cylindrical hill joined by an inside concentric circular cavity due to different
incidence angels for comparison with the results of Liang et al. (2004) at: (a) η′ = 0.25 and a/b = 0.20; (b) η = 1.0 and a/b = 0.40; (c) η = 2.0 and
a/b = 0.40; (d) η′ = 1.0 and a/b = 0.60.

remaining nodes were located on their cavities and hill surfaces. The Ricker parameters and material properties were as those considered for
two previous examples. This problem was analytically solved by Liang et al. (2004). They presented a solution based on Fourier–Bessel series
expansion and auxiliary functions technique. Fig. 10 shows normalized ground surface response in different shape ratios and dimensionless
frequencies for the incident angles of 0◦, 45◦ and 90◦. As can be observed, the present results were in very good agreement with those of
Liang et al. (2004). Only negligible disagreement was seen for angle 90◦ in a/b = 0.40 at top hill location. But, the errors were less than 7
per cent for the most critical state and it seems that they can be accepted.
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Figure 11. Normalized displacement amplitudes on the surface of a semi-circular cylindrical hill joined by an inside concentric semi-circular cavity for
comparison with the results of Lee et al. (2004) at η = 3.0 and η = 5.0: (a) a/b = 0.50 and .; (b) a/b = 0.50 and θ = 90◦; (c) a/b = 0.30 and θ = 0◦; (d)
a/b = 0.30 and θ = 90◦.

For better compatibility of the analytical models with the nature, Lee et al. (2004) investigated a special case of full-circular cavity, that
is, semi-circular cavity case one. They showed a closed-form analytic solution for semi-circular cylindrical hill with a concentric semi-circular
cavity using the cylindrical wave functions’ expansion method. The 2-D results by Lee et al. (2004) were presented in two shape ratios
of a/b = 0.30, 0.50 and at two dimensionless frequencies of 3.0 and 5.0. To compare the present response with their results, Fig. 11 is
demonstrated for some cases. This figure shows normalized displacement amplitude on the ground surface in the presence of a semi-circular
hill joined by a semi-circular cavity with the mentioned shape ratios, due to incident SH waves including angles of 0◦ and 90◦. As can be seen,
accuracy of the results was very good compared with those by Lee et al. (2004). However, an insignificant error that can be again observed on
the hill surface for shape ratio a/b = 0.50 at frequency of 3.0 is less than 7 per cent and it appears that the results can be certainly approved.
It should be mentioned that the number of 55 and 63 nodes was totally used in modelling this geometry for shape ratios of 0.30 and 0.50,
respectively, and the rest of the parameters were the same as previous examples.

4.4 Analysis time

Better capability and efficiency of the half-plane time-domain BEM approach as well as much shorter run time than traditional full-plane
time-domain BEM have been investigated for analysing concave topographies (Panji et al. 2013a). In this section, a comparative study for
analysis times of convex topographies models was conducted in completely the same conditions between the proposed method and a full-plane
BEM approach (Table 1). In this regard, some of the models in the previous examples were prepared based on full-plane BEM approach
(Kamalian et al. 2006; Kamalian et al. 2008a; Panji et al. 2013a) and their run times were evaluated. As can be seen in Table 1, in addition to
decreasing total number of nodes to a quarter in modelling, the analysis time reduced considerably to one-fifth in the use of present method
and it seems that run time difficulties in time-domain analysis can be promoted using half-plane time-domain BEM approach.

5 C O N C LU S I O N S

In this paper, a developed half-plane time-domain BEM was presented for analysing the 2-D convex topography features due to oblique
incident SH waves. Using this method, only the interface and surface of the hill need to be discretized. First, using the proposed substructuring
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Table 1. The CPU times in terms of second from executing time-domain (a) half-plane and (b) full-plane BEM code with an Intel Core i7 CPU M640 at
2.8 GHz and 4 GB RAM

(a) NNa

Interface Surfaces Total Time (s)

Example 1 A semi-circular cylindrical hill 19 31 50 115

h = 0.75b 19 25 44 102
Example 2 A Gaussian-shaped ridgeb h = 0.50b 19 21 40 88

h = 0.25b 19 15 34 72

A semi-circular cylindrical hill a = 0.60b 8 65 73 152
Example 3 joined by an inside concentric a = 0.40b 12 53 65 138

circular cavityc a = 0.20b 16 41 57 129

(b) NN

Surfaces Ground surfaces Total Time (s)
Example 1 A semi-circular cylindrical hill 31 180 211 548

h = 0.75b 25 180 205 523
Example 2 A Gaussian-shaped ridge h = 0.50b 21 180 201 499

h = 0.25b 15 180 195 480

A semi-circular cylindrical hill a = 0.60b 65 180 245 860
Example 3 joined by an inside concentric a = 0.40b 53 180 233 725

circular cavity a = 0.20b 41 180 221 634
aNN indicates the number of nodes.
bAnalysis times are presented in different aspect ratios (h/b) for the Gaussian-shaped ridge.
cAnalysis times are presented in different shape ratios (a/b) for circular cavity.

process, the convex topography was divided into two domains, a half-space and a surface topography totally above the half-space. After
applying the half-plane BEM approach for each domain and forming influence coefficients of the required matrices, the continuity conditions
at the interface were satisfied in order to make an original coupled domain. Finally, by employing the boundary conditions at irregular surfaces,
the problem was solved as well. Three interesting examples were examined to obtain capability and efficiency of the method. A semi-circular
cylindrical hill, a Gaussian-shaped ridge and a semi-circular cylindrical hill joined by an inside concentric full/semi-circular cavity were
investigated subjected to vertically as well as obliquely propagating incident SH waves as the Ricker wavelets type. By comparing the present
results with those of the published works, it was seen that not only the method was successfully able to analyse these problems but also much
shorter run time against full-plane BEM approach was determined. Due to absence of an interface in the topographies located completely
below the ground surface, such as valley shaped features and embedded cavities, the half-plane BEM approach was straightforwardly able to
model them in a simpler way compared to convex case (Panji et al. 2013a). But, the number of nodes that must be defined at the interface
was very less than the number of nodes that was needed to be considered on the smooth surface in time-domain full-plane BEM approach
(Kamalian et al. 2006, 2008a,b).

Although this paper was able to show application of the half-plane time-domain BEM approach for either convex or previously concave
topographies, it is obvious that this method had also some important limitations in comparison with full-plane BEM approach. Due to the
complexity of the half-space Green’s function, they could not be simply extended to important cases such as anisotropic and viscoelastic
media. This kind of problems could be solved more efficiently by the full-plane BEM.

As can be seen, the problems presented in this paper were solved with assumption of homogeneity; however, they could be non-
homogenously investigated as well. The use of half-plane time-domain BEM for solving the non-homogeneous problems including alluvial
valleys and multi-layered media with irregular interface can be interesting topics, which will be studied in future works.
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