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In this paper, an elastostatic half-plane boundary element method (BEM) formulation was applied to ana-
lyze the stress behavior of underground pressure pipes, embedded in two-layer soils. In the use of this
method, only the boundary of pipe and interfaces were required to be discretized. In this regard, first,
a computer code was prepared based on a multi-region substructuring process in the BEM scheme.
Then, the efficiency and applicability of the method as well as the prepared algorithm were verified by
solving some practical examples and comparing the results with those of the published works. Finally,
a parametric study was done to evaluate the effect of pipe depth and determine the soil stress distribu-
tion. The studies showed that the half-plane BEM was in good agreement with the existing solutions and
its capability was very favorable for elastostatic problems including semi-infinite domain. It is obvious
that this method can be practically used to analyze the geotechnical underground buildings in substitut-
ing the full-plane BEM formulation.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In big cities, underground structures as well as subsurface
openings have become a major requirement for resource transmis-
sion systems. In this regard, they should be designed in such a way
that could be sufficiently powered against the applied loads. There-
fore, it is essential for engineers to utilize appropriate method for
obtaining more accurate responses. Technically speaking, there
are different methods for stress analysis of the embedded pipes
which include analytical, semi-analytical, experimental and
numerical ones. Due to the growth of computers and computing
devices, numerical methods have been increasingly considered.
Common numerical methods with regard to formulation can be
divided into domain and boundary methods. In domain methods,
such as finite element method (FEM) and finite difference method
(FDM), by discretizing domain into the smaller elements and writ-
ing equilibrium equations for each element, the initial unknowns
can be determined. Several researchers have tried to use them
for analyzing geotechnical problems (Mroueh and Shahrour [18],
Augarde and Burd [1] and Garner and Coffman [19]).

Although the domain methods have good accuracy for analyz-
ing the closed media, they are not favorable for modeling infinite
and semi-infinite spaces because of increase in elements number
and consequently increase in calculation time. Hence, the area
was prepared for the appearance of boundary methods, such as
boundary element method (BEM). In this method, it is only
required to discretize the boundary of the body. A complete review
of BEM mathematics extension can be found in Cheng and Cheng
[4]. In the use of BEM approaches, there are two types of formula-
tions for modeling continuous semi-infinite domains, full-plane
BEM and half-plane BEM. Discretizing all boundaries of the body
in the closed loop as well as defining ground surface meshes to a
distance far away from the interested zone is inevitable in the
full-plane BEM models. Some studies have been done using this
method for modeling the problem and obtaining the responses
which include works by Crouch and Starfield [3], Yang and Sterling
[27], Xiao and Carter [24], Wu et al. [25] and Panji et al. [11,12].

On other hand, half-plane BEM can be practically used. In this
method, due to the use of image source approach [5] to satisfy
the ground surface stress-free condition when solving equilibrium
equations, it is not required to discretize smooth ground surface
and only the boundaries under certain constrains need to be dis-
cretized. Additionally, it is not wanted to close the boundaries in
the far field of the interested zone, so that the model is an opened
domain. Several researchers developed this method and used
them. The model of point load applied in the half-space first solved
by Mindlin [16]. Telles and Brebbia [23] used Mindlin’s approach
and presented appropriate half-plane fundamental solutions for
analyzing the homogeneous elastostatics problems. Ye and Sawada
[26] explained numerical properties of half-plan BE analysis for 2-d
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elastostatic problems. An elastic orthotropic half-plane BEM pro-
posed by Dumir and Mehta [6]. Pan et al. [10] developed a half-
plane BEM for analyzing anisotropic media. Dong et al. [8] used a
different integral equation for modeling elastic half-plane inclu-
sion problems. Later, Dong and Lo [7] developed a BEM scheme
for analyzing elastic half-plane which contains nanoinhomo-
geneities. Also, in the field of dynamic problems, half-plane BEM
has been developed that can be pointed out to studies of Panji
et al. [13,14].

The related literature has indicated that half-plane BEM has not
been used for stress analysis of layered semi-infinite domains con-
taining lined cavities thus far. So, in this paper, the complete for-
mulation of half-plane BEM for modeling a lined cavity in a
layered soil was presented. In this regard, after developing a com-
puter algorithm, and verifying the results using some available
analytical solutions, a model of a circular pressure pipe buried in
the second layer of a two-layer soil was examined and the effects
of pipe depth on soil stress distribution were evaluated. Showing
the simplicity of half-plane BEM compared to other numerical
solutions in the modeling of embedded geotechnical buildings
was the main purpose of this paper.

2. Half-plane BEM

2.1. Half-plane fundamental solutions

For extracting half-plane fundamental solutions, it is required
to apply ground surface stress-free conditions when solving equi-
librium equations. After solving the equilibrium equations, the
half-plane fundamental solutions can be generally obtained as
follows:

ð Þ� ¼ ð ÞK þ ð ÞC ð1Þ
where K denotes Kelvin’s fundamental solution and C is the com-
plementary part. Kelvin’s fundamental solutions that are obtained
by applying unit point load in an infinite domain without consider-
ing any boundary conditions can be written as follows [2,9]:

uK
ij ¼

1
8pGð1� mÞ ð3� 4mÞ ln 1

r
dij þ r;ir;j

� �
ð2Þ

pK
ij ¼

1
4pð1� mÞr

@r
@n

ð1� 2mÞdij þ 2r;ir;j
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where uK
ij and pK

ij are the Kelvin’s displacement and tractions fields
in the direction j due to a unit point load in the direction i, respec-
Fig. 1. Use of image source approach in the half-plane BE
tively, G is the shear modulus, dij is Kronecker delta and m is the
Poisson’s ratio. According to Fig. 1 and by the assistance of image
source approach for satisfying the stress free boundary conditions,
the complementary parts of displacement fundamental solutions
are presented as follows [23]:
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In addition to the displacement part, for displaying the bound-
ary integral, it is required to obtain the complementary traction
fundamental solutions. Traction components can be easily calcu-
lated by multiplying stress tensor by unit normal vector as follows:

pC
ij ¼ rC

jkink ð8Þ

where pc
ij is the complementary part of traction fundamental solu-

tion, nk are the components of the normal to the boundary at point
k, andrjki

c are stress components in plane j in direction k due to load
affecting direction i [23].

2.2. Boundary integral equation (BIE)

BIE for half-plane BEM is similar to full-plane BEM:

cijui ¼
Z
C
u�
ijpj dC�

Z
C
p�
ijuj dC ð9Þ

where uij
⁄ and pij

⁄ represent the half-plane fundamental solutions for
the components of displacements and tractions and u as well as p
represents scalar values of the displacement and tractions on
boundary C, respectively. cij are constant values that can be easily
determined by rigid body motion effects [2,9,23]. After applying
the above integrals to all boundaries, unknown displacements and
tractions can be easily determined. Finally, for each internal point,
M for satisfying stress free boundary conditions [23].
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the displacements and stresses can be respectively obtained using
the following equations:

ui ¼
Z
C
u�
ijpj dC�

Z
C
p�
ijuj dC ð10Þ

rij ¼
Z
C
u�
ijkpk dC�

Z
C
p�
ijkuk dC ð11Þ

where rij represents the stress values at point i and in direction j
and uijk

⁄ as well as pijk
⁄ represents the fundamental solutions of dis-

placement and traction components, respectively, which can be
determined by adding full-plane fundamental solutions to the com-
plementary part [23].

2.3. Discretizing BIE

After discretizing the boundaries of the body with N quadratic
elements, the discretized form of BIE can be shown as follows:

cijui ¼
XN
k¼1

Z
Ck

u�
ijpj dCk �

XN
k¼1

Z
Ck

p�
ijuj dCk ð12Þ

In this expression, Ck denotes the boundary of element k. The
matrix form of the above equation can be shown as follows:

H� U ¼ G� P ð13Þ
where U and P denote the boundary displacement and traction vec-
tors and H and G are the matrixes that can be calculated using the
following equations:

Hij ¼
Z
C
p�
ij dC ð14Þ

Gij ¼
Z
C
u�
ij dC ð15Þ
2.4. Modeling

To model a two-layer soil domain that includes a lined cavity,
the problem can be divided into three distinct parts. The first part
(X1) consists of a soil surface layer, the second part (X2) contains a
semi-infinite domain as the second soil layer and outer boundary
of cavity, and the third part (X3) contains only the outer and inner
pipe boundaries as a finite body (Fig. 2).

The matrix form of BIEs for X1 can be written as follows:

H11 H12½ � u11

u12

� �
¼ G11 G12½ � p11

p12

� �
ð16Þ
Fig. 2. Modeling a pipe embedded in tw
where (H11 and G11) and (H12 and G12) represent the matrix form of
BIE for ground surface boundary (C11) and two-layer interface
boundary (C12), respectively. The matrix form for the second part
(X2) can be written as follows:

H21 H23½ � u21

u23

� �
¼ G21 G23½ � p21

p23

� �
ð17Þ

where (H21 and G21) and (H23 and G23) represent the matrix form of
BIE for the interface boundary (C21) and pipe outer boundary (C23),
respectively; finally, for the third part (X3) matrix, equations can be
easily written as follows:

H32 H33½ � u32

u33

� �
¼ G32 G33½ � p32

p33

� �
ð18Þ

where (H32 and G32) and (H33 and G33) represent the matrix form of
BIE for pipe outer boundary (C32) and pipe inner boundary (C33),
respectively. For extracting the coupled matrix, it is necessary to
apply stress continuity and displacement compatibility conditions
for interface boundaries. In this problem, there are two interface
boundaries between soil layers (C12) and pipe-soil contact zone
(C23). Continuity and compatibility conditions for the interface
boundaries can be mathematically written as follows:

u12 ¼ u21

p12 þ p21 ¼ 0

�
ð19Þ

u23 ¼ u32

p23 þ p32 ¼ pg

(
ð20Þ

In this expression, Pg denotes the effect of gravitational stresses
on pipe body. After combining Eqs. (14)–(18), the coupled matrix
for analyzing a two-layer soil including a buried pipe can be easily
extracted as follows:

H11 H12 0 0
0 H21 H23 0
0 0 H32 H33

2
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3
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0
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2
64

3
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ð21Þ
Finally, by applying external boundary conditions to the free

boundaries (C11 and C33), the soluble form of Eq. (21) can be
obtained as follows:
o-layer soil using half-plane BEM.
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where

AX ¼ F ð23Þ
In the above equation, X represents the unknown boundary val-

ues, A is the coefficients’ squared matrix corresponding to
unknown values, and F represents a vector that contains known
values.
Fig. 4. Comparison of an analytical response [15] and the present study for a two-
layer domain with rigid half-plane.
2.5. Verification

In order to analyze a two-layer soil including a circular pipe, a
computer algorithm was developed based on the above formula-
tion using MATLAB software [17]. This algorithm can analyze the
effects of combined surcharge and pipe pressure on soil stress dis-
tributions; moreover, it can present stress and displacement values
for any internal point. Due to the lack of analytical solutions for the
model of shallow pipes in layered soils, analytical results of Jeffery
[22], Jaeger [21], Poulos and Davis [15] as well as Li and Wang [20]
were used for verifying this algorithm.

Jeffrey [22] presented an analytical response for ground surface
horizontal stresses due to a pressure circular unlined cavity,
embedded in a homogenous semi-infinite domain. In this regard,
for the first layer, second layer, and pipe body was introduced a
similar material properties. Fig. 3 shows the half-plane BEM
responses compared with Jeffrey’s analytical solutions [22]. As
can be seen in figure, a good match between the analytical and
numerical results can be observed. It should be noted that, for solv-
ing this model using present method, only 100 quadratic elements
were used.
Fig. 3. Comparison of an analytical response [22] and the present study for a
circular cavity embedded in a single homogeneous layer.
Poulos and Davis [15] obtained an analytical response for verti-
cal stresses in two-layer domains. In their study, the second layer
was considered as rigid and a uniform load affected on the ground
surface. For introducing this model into the present study, elastic
module of the second layer was selected as a large amount (about
200 GPa). Also, to eliminate the effect of cavity, the radius of pipe
was assumed as an insignificant number (1 cm) and the depth
was a large number (about 50 m) compared to other parameters.
Results of the comparison are shown in Fig. 4; it can be seen that
there was good agreement between the analytical and numerical
responses.

In the third example, a lined cavity in an infinite domain was
studied. Jaeger [21] was able to present an analytical response
for radial stress distribution near the lined cavities that were con-
structed in deep soil. To achieve this purpose, in the present study,
the depth of pipe was assumed to be a large number (200 m). Then,
the radial stress in the pipe wall was calculated and compared with
Jaeger’s analytical solution [21] in Fig. 5. As can be seen in the fig-
ure, there was good agreement between the analytical and numer-
ical results.

Shallow lined cavities under internal and ground surface pres-
sures have been studied by Li and Wang [20]. They presented ana-
lytical solutions for radial stress distribution around a lined
Fig. 5. Comparison of an analytical response [21] and the present study for a deep
lined tunnel.
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circular cavity. For comparing these results with the half-plane
BEM solution, the same problem was modeled. The results are pre-
sented in Fig. 6 for radial stresses. As can be seen in the figure,
there was good agreement between the analytical and numerical
results.
Fig. 7. Schematic representation for this study.

Fig. 8. Ground surface displacements for the two-layer soil in the presence of a
pressure pipe and surface load (h = 2 m, r = 0.5 m).
2.6. Parametric study

In this section, in a parametric study, a circular pressure pipe
buried in the second layer of a two-layer soil was modeled and
the effects of pipe depth on the ground surface displacements as
well as the stress distribution of soil were evaluated. Material
properties of the soil layers and pipe body are considered in
Fig. 7. Soil’s first layer was assumed to be soft clay with
c1 = 15 kN/m3, E1 = 20 MPa, and m1 = 0.25 and its thickness was
assumed h = 2 m. The second layer’s material was assumed to be
well grained sand with c2 = 19 kN/m3, E2 = 40 MPa, and m2 = 0.3
and the material of the pipe body was assumed to be cast iron with
E3 = 165 GPa and m3 = 0.22. The pipe’s inner radius was r = 0.5 m
and its thickness was t = 1 mm. For modeling the pipe’s internal
pressure, a uniform pressure (P = 1000 kPa) was applied to the
inner pipe boundary. Also, a uniform load (Ps = 1000 kPa) was
applied on free boundary of model (Fig. 7) and it’s width was
assumed to be B = 6 m. For achieving good accuracy, the pipe
boundaries were totally discretized using 60 quadratic elements,
and the interface boundary between soil layers was discretized
using 50 quadratic elements. It should be noted that, according
to Fig. 7, for modeling the effect of gravitational pressure, the
external load of Pg was applied to the outer pipe boundary as
follows:

Pg ¼ c1hþ c2ðd� hÞ ð24Þ

where c1 and c2 are the unit weights of the first and second soil lay-
ers, h is the thickness of soil’s first layer, and d is the pipe depth
(Fig. 7).

Surface displacements in the presence of pipe lines and surface
loads are one of the interesting topics for geotechnical engineers. In
big cities pipes and lined tunnels are the most common geotechni-
cal structures. These structures can change the stress distributions
in soil body and cause different type of soil surface displacements.
In this study, the surface displacements were studied in two cases.
In first case, it was assumed that the pipe is embedded in the sec-
ond layer and it has no internal pressure (P = 0). Also, for modeling
the effects of a ground structure, a surface load (Ps = 1000 kPa) is
applied on the ground surface (Fig. 7). Figs. 8–10 show the surface
Fig. 6. Comparison of an analytical response [20] and the present study for radial
displacements for this case. It is obvious that there are two type of
displacements on the ground surface in this case: the settlement
and swelling, which its magnitudes are related to the thickness
of first layer as well as pipe depth and geometrical properties
respectively. When the thickness of the surface layer increases,
the settlements and swelling increase on the ground. Generally,
stresses near shallow lined tunnel (R = radial distance from center of tunnel).



Fig. 9. Ground surface displacements for the two-layer soil in the presence of a
pressure pipe and surface load (h = 3 m, r = 0.5 m).

Fig. 10. Ground surface displacements for the two-layer soil in the presence of a
pressure pipe and surface load (h = 4 m, r = 0.5 m).

Fig. 11. Ground surface displacements for the two-layer soil in the presence of a
pressure pipe and surface load (h = 2 m, r = 0.5 m).

Fig. 12. Ground surface displacements for the two-layer soil in the presence of a
pressure pipe and surface load (h = 3 m, r = 0.5 m).

Fig. 13. Ground surface displacements for the two-layer soil in the presence of a
pressure pipe and surface load (h = 4 m, r = 0.5 m).

M. Panji, B. Ansari / Computers and Geotechnics 81 (2017) 360–367 365
the depth of pipe has an inverse ratio with the magnitude of sur-
face settlements, i.e. the maximum settlements occurs when the
pipe is near the ground surface.

In second case, surface load and pipe pressure was assumed as
Ps = 1000 kPa and P = 1000 kPa, respectively. The pipe pressure
was difference between this case and the former. Figs. 11–13 show
the ground surface displacements for h = 2 m, 3 m and 4 m, respec-
tively. As can be seen, according to the previous case, when the
thickness of the first layer is equal to h = 4 m, maximum settle-
ments occurs; however when the thickness is equal to h = 2 m,
the maximum swelling takes place. This is notable; when the
thickness of first layer is greater than 3 m, the relation between
surface displacements and pipe depth diminishes slowly and all
carves show the same magnitude for displacements.

Stress distribution near the pipe due to fluid pressure is another
interesting topic for the engineers. When constructing geotechni-
cal buildings, the patterns of stress distribution can help to obtain
good stability predictions. The stress values and its patterns
around the pipe change by increasing the pipe depth. For observing
these changes, radial stresses at right side of the pipe (x = d) was
plotted in Figs. 14–16 for h = 2 m, 3 m and 4 m, respectively. Mate-



Fig. 14. Radial stresses near the pipe for the different depths (h = 2 m, B = 6 m).

Fig. 15. Radial stresses near the pipe for the different depths (h = 3 m, B = 6 m).

Fig. 16. Radial stresses near the pipe for the different depths (h = 4 m, B = 6 m).
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rial and geometrical properties of this study are the same as used
in previous example. Surface load pressure and internal pressure
of pipe is equal to Ps = 1000 kPa and P = 1000 kPa respectively.

As can be seen, for a fixed h, by increasing the pipe depth, the
radial stresses decreases effectively near the pipe. When the pipe
is near the interface i.e. m is equal to 4r, radial stresses have a great
peak and their magnitude decreases rapidly with increasing m.
First layer thickness is another effective variable which change
the shape and magnitude of radial stresses near the pipe. When
the thickness of shallow layer increases, the magnitude of radial
stresses decrease because of increasing of pipe depth. But, when
the pipe is near the interface of soil layers, the shape of radial stress
are the different.

In general, it can be concluded that the half-plane BEM has good
capability for modeling underground geotechnical structures and it
can give accurate responses when a pipe model embedded in lay-
ered soil is considered.
3. Conclusions

In this paper, formulation and application of half-plane BEM for
analyzing pressure pipes embedded in the layered soils were pre-
sented. After preparing a computer algorithm and carrying out
necessary verifications, a pressure pipe buried in two-layer soil
was analyzed. Studies showed that the accuracy of half-plane
BEM for analyzing semi-infinite domains was quite suitable. The
number of elements used for modeling an embedded cavity in lay-
ered media was reduced by 50% compared with full-plane BEM
[11,12]. Because this method did not require closing the bound-
aries in the far-field of interested area and discretizing only some
constrained boundaries, it can increase the accuracy of results
compared with other methods. In the parametric study, the sim-
plicity of half-plane BEM was demonstrated for modeling embed-
ded pressure pipes and effects of pipe depth on soil stress
distribution were evaluated by presenting some stress patterns.
Half-plane BEM can be a good alternative to other methods for
modeling geotechnical subsurface buildings.

Whereas the examples presented in this paper showed some
capabilities of the half-plane BEM, it is obvious that the method
had also some important limitations. Stress analysis of multi-
phase mediums as well as undrained soils with the half-plane
BEM was not so straightforward. Besides, due to the complexity
of the half-plane fundamental solutions, they could not be simply
extended to important cases such as anisotropic and nonlinear
media. This kind of problems could be solved more efficiently by
the FEM. Combining the half-plane BEM with the FEM and using
the advantages of each method in its place seems to be another
efficient way which should be experienced in the future.
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