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Abstract
This study presents the formulation of a finite-element numerical method for the analysis of shear wave dispersion out of 
plane SH. Also, it evaluates the seismic behavior of alluvial valleys located in a semi-infinite rigid space. This formulation is 
implemented in computer codes in time domain. To examine the accuracy of the program, various examples are solved and 
some numerical considerations in the dynamic analysis of the topographic feature are investigated by parametric studies. The 
results indicate that the appropriate time step in the finite-element method (FEM) is 45/1000 of the predominant period of 
the incident wave. The appropriate length of the element should be selected for placing at least eight nodes on the smallest 
wavelength. Increasing Gaussian points in integrating mass matrices in comparison with stiffness matrices is not effective 
in the accuracy of results. It was found that the choice of δ > 0.5 in Newmark’s integration method reduced the amplitude, 
but the change in the � value did not affect the results. The effect of a feature on the ground response is only noticeable if 
the wavelengths are comparable with the dimensions of the feature.

Keywords FEM · SH waves · Element length · Time step · Coefficients of Newmark’s integration · Gaussian points (GPs)

1 Introduction

Topographic feature plays a critical role in seismic destruc-
tions. Besides, the tendency of societies to develop urban 
fabric near these sites has made this issue more important. 
For this reason, researchers have proposed several methods 
to provide quantitative and qualitative definitions for esti-
mating these effects. One of the important topographic fea-
tures is the study of the seismic behavior of alluvial valleys 

subjected to propagating incident SH waves. Initially, the 
researchers used analytical methods to study the effects of 
topography, while Trifunac [1, 2] developed an evolution 
in analytical methods and using the Bessel series solved a 
two-dimensional modeling of circular and submerged allu-
vial valleys under SH waves. In the following years, several 
researchers evaluated analytical and semi-analytical meth-
ods to investigate the problem of SH elastic wave disper-
sion in alluvial valleys [3–8]. Specifically, some of Tsaur’s 
research can be pointed out [9–12]. This research conducted 
several studies such as analysis of partially filled semi-cir-
cular alluvial valley, truncated semi-circular canyon, deep 
triangular valley, and partially filled semi-elliptical alluvial 
valley using region-matching method. Due to desirable accu-
racy in the results of analytical and semi-analytic methods, 
researchers are still developing these methods; however, 
a low flexibility and limited application of these methods 
in some specific and simple cases of topographic features 
have directed researchers to numerical methods. Numerical 
methods that are divided into three groups of volumetric, 
boundary and combined methods are more compatible with 
nature and have the ability to model topographic features 
with complex geometries.
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Finite-element method (FEM), finite difference method 
(FDM), and spectral finite-element method (SFEM) are the 
most familiar volumetric methods. In volumetric methods, 
the domain of the studied environment is discontinued, and 
the governing boundary conditions such as the conditions for 
the emission of waves in an infinite space are established by 
defining a series of approximate energy-absorbing bounda-
ries around the desired region [13]. This method typically 
focuses on investigating the seismic behavior of alluvial val-
leys under propagating incident SV and P waves [14–18]. 
Therefore, the technical literature shows few studies on the 
evaluation of the seismic behavior of SH wave-exposed allu-
vial valleys using volumetric methods. This approach was 
only used by Bielak [19] and Gelagoti [20]. Bielak [19] has 
examined the seismic response of a small valley in Kirova-
kan during an earthquake in Armenia 1988. He presented a 
method for visualizing the structure response as a function 
of the natural-frequency simulator of the structure and its 
location within the valley. This method identifies a variety 
of potentially damaging structures and identifies situations 
within the valley that are likely to be highly damaged. He 
indicated that the simulation of two-dimensional ground 
motion offers a good description of the damage observed 
compared to the one-dimensional analysis. In the two-
dimensional simulation, the maximum ground and structural 
response was predicted in the frequency range of 2.5–4.5 Hz, 
which is exactly in accordance with the natural frequencies 
of the four- to five-story structures that have experienced 
the great earthquake. Gelagoti [20] conducted a numerical 
study to evaluate the behavior of a shallow soft valley as a 
test case. In this study, the sensitivity of the two-dimensional 
valley response to parameters such as frequency of the input 
motion, its details and nonlinear behavior of the soil were 
investigated. The researcher indicated that the focus of the 
wave at the edges of the valley and the origin of the surface 
waves at the valley corners is responsible for significant 
aggravation of the seismic motion. Furthermore, he showed 
that applying non-linear soil behavior in calculating, the 
response of two-dimensional valleys in a measurable extent 
is correct, and increasing the damping ratio mainly affects 
the emission of surface wave.

The boundary methods have been developed to analyze 
linear elastic environments. They have been used by several 
researchers to evaluate the seismic motion of valleys and allu-
vial sites subjected to propagating incident SH waves [21–31], 
because of their ability to solve the problem by meshing geo-
metric boundary of the object. In most of these researches, 
the effects of feature geometry (semi-circle, trapezoidal, and 
triangle), the ratio of impedance between alluvial and the sur-
rounding area, and the need for 3D modeling of topographic 
features have been investigated. The third group of numerical 
methods is hybrid method. To enjoy the advantages of various 
methods, researchers aim to combine volumetric and boundary 

methods. Among conducted studies in this field, one can name 
the studies of Bielak [32], Gil-Zepeda [33], and Shyu [34].

As literature review showed, limited research has been con-
ducted in the field of evaluating the seismic behavior of allu-
vial valley under propagating SH waves using FEM. Therefore, 
numerous questions in this field have remained unanswered. 
For example, is it possible to present a relationship to deter-
mine the length of element and appropriate time step? Does 
the increase in the order of integral mass matrix, compared to 
the stiffness matrix, affect the accuracy of the results? How 
do Newmark coefficients (NCs) affect the results of the prob-
lem in different damped and undamped conditions? How is 
the effect of the shape (height to half width) on magnifica-
tion potential and frequency characteristics? Therefore, in this 
paper, we intend to use the time domain FEM to numerically 
investigate the dynamic aspects of this topographic feature. 
Accordingly, first, formulation of FEM is performed for the 
2D dynamic analysis of a rectangle-shaped alluvial valley 
in a semi-finite rigid environment subjected to propagating 
incident SH waves. Then proper answers are provided for the 
questions above.

2  Problem Formulation

In this section, the formulation governing the problem and 
its matrix form are presented. Given that in the propagation 
of incident SH waves the displacement occurs perpendicular 
to the direction of propagation and out of plane, we present 
differential (scalar wave) equation in an isotropic, elastic, and 
homogeneous environment with a small displacement range 
as follows [35]:

where u is displacement out of plane, c is the shear wave 
velocity equivalent to 

√

�

�

 , � is density, � is shear modulus, 

and F is a volumetric force out of plane. Equation 1 is 
extracted from an elastic environment using the weighted 
residual method and weak formulation, where �ij , �ij , and ti 
are tensor components of stress, strain, and traction on the 
boundary, respectively,

Then the equilibrium equation of enclosed area Ω is cal-
culated as follows (where M is a mass matrix, K is stiffness 
matrix, C is damping matrix and R is the sum of surface and 
volumetric forces) [36]:

(1)∇2u + F =
1

c2
�
2u

�t2
,

(2)

∫
Ω

𝜌üi𝛿uidΩ + ∫
Ω

𝜎ij𝛿𝜀ijdΩ = ∫
Γ

ti𝛿uidΓ + ∫
Ω

Fi𝛿uidΩ.

(3)MÜ + CU̇ + KU = R.
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In the present study, Rayleigh damping mechanism, 
which is proportional to the mass and stiffness matrices of 
the examined environment, is expressed as follows:

where �0 and �1 are Rayleigh damping coefficients and are 
determined using the damping ratio �i and at least two vibra-
tional frequencies �i . The relationship between parameters 
�0 , �1 , �i and �i is defined as follows:

2.1  Modification of Equilibrium Equation 
for Earthquake Input

In many seismic problems, loading is applied as a set of 
specific boundary accelerations; and does not include sur-
face and volumetric forces. Hence, all points with certain 
accelerations are supposed to move together, which is rep-
resented by the acceleration–time history 

{

üg
}

 . Now, if the 
system moves as a rigid body, every point will have the time 
history of motion which is defined by the vectors 

{

ug
}

 , 
{

u̇g
}

 , 
and 

{

üg
}

 . Here, 
{

u̇g
}

 and 
{

ug
}

 , respectively, are the results 
of one- and two-time integral of 

{

üg
}

 in time. In fact, the 
flexible mode is defined by relative movements between free 
nodes and nodes on a boundary that have a given motion, 
which is characterized by {V} , 

{

V̇
}

 , and 
{

V̈
}

 vectors [37]:

By placing Eq. 6 in 3, Eq. 7 is obtained, where 
{

ug
}

describes rigid body motion. Since there are no direct forces 
in the calculation except 

{

üg
}

 , the value of R is considered 
to be zero:

This formulation is widely used in earthquake engineering 
in relative motion terms. However, it should be noted that the 
freedom degrees of the formulation belong to the nodes with 
no specific time history of acceleration and relative displace-
ment of these nodes remains in matrix {V} , which results in 
significant decrease in dimensions of matrices and vectors.

2.2  Algorithm

To solve differential equations, various numerical methods 
have been presented in their selection; two factors including 
stability and accuracy play an important role. Among these 
methods, Newmark’s integration method which was used 
in the present study can meet both factors. In this method 
which is used as an expansion of linear acceleration, � and � 

(4)C = �0M + �1K,

(5)�0 + �1�
2
i
= 2�i�i.

(6)

{V} = {U} −
{

ug
}

{

V̇
}

=
{

U̇
}

−
{

u̇g
}

{

V̈
}

=
{

Ü
}

−
{

üg
}

.

(7)M
({

V̈
}

+
{

üg
})

+ C
{

V̇
}

+ K{V} = 0.

are parameters that can be determined to obtain the accuracy 
and stability of integration [36]. Also, �t parameter, which 
is a time step, plays an important role in the volume and 
accuracy of calculations.

By re-writing Eq. 7 in (t + Δt) time and using the New-
mark’s integration method, the FEM equation governing 
equilibrium of enclosed area is written as follows:

where

In the next section, an algorithm is proposed to solve 
Eq. 8.

3  Flowchart

To analyze the dynamical responses of 2D environments 
under SH seismic waves, rigid bed rock FEM (RBRFEM) 
software is provided by considering elastic behaviors based 
on FEM. Deformation and accelerations are calculated by 
the software. In the part of the FEM, eight-node elements 
are used and the current program is rewritten by MATLAB 
software.

3.1  Introducing Subprograms

All main subprograms are called under MAIN PROGRAM 
tittle. Management of time steps and running of the program 
are done by this page. In the following, subprograms called 
by MAIN PROGRAM are introduced based on the priority 
of the call.

– WRITE DATA Subprogram

The main data of the problem are applied through this 
subprogram, which includes material properties, geometric 
type of feature, and the characteristics of the Ricker wavelet 
function. Besides, in this program, matrices of acceleration 
and free motion of the ground’s surface are provided. The 
program is basically assigned to make the input file.

– INPUT DATA Subprogram

(8)KEF ⋅

{

Vt+Δt
}

= Zt+Δt
EF

,

(9)

KEF = K + C
𝛿

𝛼Δt
+M

1

𝛼Δt2
,

Zt+Δt
EF

= −C
[

{

V̇ t
}

+

(

(1 − 𝛿)
{

V̈ t
}

+
𝛿

𝛼

At
EF

)

Δt
]

−M
[

At
EF

1

𝛼

+
{

üg
}

]

,

At
EF

= −
({

Vt
}

+
{

V̇ t
}

Δt
) 1

Δt2
−
(

1

2
− 𝛼

)

{

V̈ t
}

.
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This subprogram reads the input file based on the WRITE 
DATA subprogram, in the order of the values printed in it and 
places it in the main variables of the program.

– COMPUT KMD Subprogram

In this subprogram, total stiffness, mass, and damping 
matrices of alluvial valleys are assembled. Then stiffness 
matrix of all materials KEF is formed based on Eq. 9.

– COMPUT ZF Subprogram
– This subprogram which is needed to be called by time 

step counter in each time step makes the matrix Zt+Δt
EF

 
based on Eq. 9. This matrix estimates and combines the 
node forces of the matrix related to the effects of previous 
steps and node forces such as damping and mass matri-
ces, as well as the force resulting from the acceleration 
of the bedrock.

– COMPUT VRM Subprogram

In this subprogram, after applying boundary conditions, 
the equations are solved and relative displacement of each 
node in time of (t + Δt) is computed. Then, in mentioned 
time, relative acceleration and velocity of each node are cal-
culated and saved in memory.

– COMPUT U Subprogram

In this subprogram, by summing the value of accelera-
tion and relative displacement of each node per time step 
with acceleration and free movement of the ground, total 
acceleration and displacement are computed.

– OUTPUT DATA Subprogram

Printing of the results of the analysis in the desired time 
steps is done by this program.

To show the accuracy, efficiency, and capability of the 
mentioned method in the analysis of the topographic feature 
in the time domain, two numerical examples will be solved.

4  One‑Dimensional Example

In this example, the 2D modeling approach is used to carry 
out analysis of a 1D site with a homogenous layer on rigid 
bedrock exposed to vertical propagating incident SH waves. 
The input motion was selected as the Ricker wavelet func-
tion type (Eq. 10):

where fp , t0 , and t are dominant frequency, time shift param-
eter, and the real axis of time, respectively. Based on Eq. 10, 

(10)F(t) =
[

1 − 2
(

�fp(t − t0)
)2
]

e−(�fp(t−t0))
2

,

the displacement out of plane of the incident SH wave is 
calculated by the following equation:

where uinc is displacement of SH wave incidence, Amax is 
the maximum amplitude of the displacement time history, 
H is Heaviside function, �inc is the phase of incident wave 
in rinc position, t is the time, and c is the shear wave velocity 
(Fig. 1).

Table 1 presents the properties related to soil layer and 
the incident SH wave while Figs. 2 and 3, respectively, 
show displacement and acceleration time histories of the 
input wave.

First, to determine the proper dimensions of the 2D site 
which simulates the 1D site, the results obtained from the 
analysis of two models with dimensions of 5000 m × 50 m 
and 6000 m × 50 m are compared. In each of the models, 
400 and 480 eight-node elements are meshed. This analy-
sis is performed to select the suitable spacing between 
lateral boundaries to prevent the errors resulting from the 
wave reflected by the lateral boundaries on the central 
point of the ground surface and simulating the 1D condi-
tion of the ground. In this analysis, the time step and NCs 
are, respectively, 0.0125 s and � = 0.25 and � = 0.5.

In Fig. 4, acceleration–time history resulting from the 
analysis of two models in a central point on the ground sur-
face is drawn and two obtained curves are completely over-
lapped, suggesting adequate distance between two lateral 

(11)

uinc(x, y, t) = Amax

[

1 − 2

(

�fp

2
�
inc

)2
]

e
−

(

�fp

2
�
inc
)2

H

(

t −
rinc

c

)

,

�
inc = c

(

t − t0
)

+ rinc,

rinc = − sin �x + cos �y,

Fig. 1  Program flowchart
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boundaries for simulation of the one-dimensional site. Then, 
to analyze the 1D site, a 6000 m width is considered.

In this step, as described earlier, a site with a depth of 
50 m and width of 6000 m was evaluated (Fig. 5). In ana-
lyzing the site, 480 eight-node elements with 25 m × 25 m 
dimensions and 1925 nodes were used.

To verify the obtained results, an iso-parametric FEM 
program (i.e., Plaxis) is used to analyze the geotechni-
cal problems. In Plaxis, this example was resolved with 
15-node elements. To apply rigid boundary condition and 
seismic condition, lateral and bottom boundaries were 
exposed to the incident for the motion of input SH wave 
(Fig. 2). Figure 6 demonstrates the central point displace-
ment of the site on the ground surface by analyzing FEM 
program of the present study and Plaxis software. As seen 
in Fig. 6, there is a good agreement between the results.

5  Two‑Dimensional Example

To evaluate the efficiency and accuracy of this program 
in analyzing the two-dimensional problem, a rectangle-
shaped valley (400 m × 200 m) located at a rigid half-space 
is analyzed. The assumed soil layer is homogeneous and 
uniform (Table 2). Also, 200 eight-node elements with 
20 m × 20 m dimensions, with the total number of 661 
nodes, and a 0.008-s time step is used.

To verify the problem, a half-plane BEM is used [30]. 
In this method, there is no need to define and discretize 
the ground surface to apply approximate boundary condi-
tions because of the accurate governing boundary condi-
tion on the formulation. In fact, only the surface of the 
topographic or boundary surface of a structure, which is 

Table 1  Site and input wave 
properties of one-dimensional 
example

Amax(m) fp(Hz) t0(s) � Poisson ratio �

(

t
/

m3
)

�

(

kN
/

m2

)

0.0001 2.4 0.9 0.05 1/3 2 180,000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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D
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ts
(m

)

× 10-5

Fig. 2  Displacement of input SH wave in a point located at the flat surface of the ground in time domain
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related to some limits, is introduced into the modeling 
and eventually discretized. Therefore, when solving the 
propagating problem of SH waves to apply a seismic load, 

the reflecting wave component of the inverse phase should 
also be considered to satisfy the boundary conditions of 
the ground surface (Eq. 12):

Fig. 3  The acceleration of input SH wave in a point located at the flat surface of the ground in time domain
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Fig. 4  The acceleration–time history of site’s central point on the ground surface
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Fig. 5  Geometry and meshing the one-dimensional site on rigid bedrock
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Fig. 6  Central point displacement of the site on the ground surface
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where uref and �ref are, respectively, displacement and 
reflexed wave phase from the ground surface in the position 
of rref and time of t. Finally, to calculate the displacement of 
the free field of ground surface uff , the following equation 
can be used:

The mentioned problem is modeled using the half-plane 
BEM. It is assumed that alluvium material and half-space 
are elastic, homogeneous, and isotropic. The shear mod-
ulus and alluvial density are represented by �2 and �2 , 
respectively, and the shear modulus and density of the 
half-space are �1 and �1 , respectively.

To simulate rigid boundary conditions in a half-plane 
BEM, several ratios of shear wave velocity are tested 
between half-space and alluvial materials 

(

c1

c2

)

 . Since in 

rigid boundary conditions, the points on the lateral and 
bottom boundaries should have the same time histories as 
input shear wave, this test is carried out to the extent that 
the results of the variations of the time history of the 
points on the boundary match the variations of the time 
history of the input wave (Table 3).

To compare the results of the tests, three points B, C, 
and D were selected on the lateral and bottom boundaries 
of the valley (Fig. 7), where the results of the displacement 

(12)

uref(x, y, t) = Amax

[

1 − 2

(

�fp

2
�
ref

)2
]

e
−

(

�fp

2
�
ref
)2

H

(

t −
rref

c

)

,

�
ref = c

(

t − t0
)

+ rref,

rref = − sin �x − cos �y,

(13)uff(x, y, t) = uinc(x, y, t) + uref(x, y, t).

time histories for these points can be seen in Fig. 8. As 
can be seen, by increasing the velocity ratio between the 
materials in the valley and its surrounding, the displace-
ments of the boundary points coincide and match with the 
displacement of the input wave’s time history and finally, 
it is possible to provide the best conditions of the rigid 
boundaries at a velocity ratio of 300. Therefore, this veloc-
ity ratio is chosen to compare the results of BEM and FEM 
with rigid boundaries.

Another point that should be considered in the use of 
the half-plane BEM is that in very high velocity ratios, the 
valley acts like a cavity and the wave inside the valley is 
blocked, which leads to the undamped results. Therefore, to 
compare the results of two methods of half-plane BEM and 
FEM, the materials in the valley in the FEM program are 
considered undamped.

Totally, with the assumption of the NCs as � = 0.25 and 
� = 0.5 , the problem of the rectangular alluvial valley is 
solved by FEM and its results are compared at the central 
point on the ground (point A) with the results of the half-
plane BEM. Figure 9 illustrates the results of the displace-
ment time history of this point, indicating a good agreement 
of the results.

6  Parametric Studies

One of the important concerns in increasing the accuracy 
of the results of numerical methods, including FEM, is the 
proper selection of a number of parameters such as time 
step and element length. Therefore, in this study, the effect 
of these parameters is considered and a suitable relation for 
choosing these values is presented.

6.1  Element Length

In this research, a rectangle-shaped valley (400 m × 200 m) 
located in a rigid half-space is evaluated (Fig. 10). The soil 
layer is assumed uniformed and homogenous and its mate-
rial is undamped. The results of this section are compared to 

Table 2  Characteristic of site and input wave in the two-dimensional 
example

Amax(m) fp(Hz) t0(s) Poisson ratio �

(

t
/

m3
)

�

(

kN
/

m2

)

0.001 3 1.7 1/3 2 320,000

Table 3  Characteristics of materials in half-plane BEM

�1

(

kN
/

m2

)

�2

(

kN
/

m2

)

�1

(

t
/

m3
)

�2

(

t
/

m3
) c1

c2

1 8.4 × 106 320,000 2.1 2 5
2 3.36 × 107 320,000 2.1 2 10
3 8.4 × 108 320,000 2.1 2 50
4 3.36 × 109 320,000 2.1 2 100
5 1.344 × 1010 320,000 2.1 2 200
6 3.024 × 1010 320,000 2.1 2 300

Fig. 7  Site geometry in the half-plane BEM
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Fig. 9  Displacement time history in the central point on the ground surface at a velocity of 400 m/s with two FEM and half-plane BEM
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three shear wave velocities of 400, 600 and 700 m/s with the 
results of half-plane BEM. Soil density and Poisson ratio are 
considered to be 2

(

t
/

m3
)

 and 1/3, respectively, and informa-
tion on the input SH wave such as time shift, predominant 
period, and the maximum amplitude of the displacement 
time history is assumed as 0.9 s, 1/3 s, and 0.001 m, respec-
tively. In solving this problem, the eight-node second-order 
elements are used, and the Newmark’s integration coeffi-
cients are � = 0.25 and � = 0.5.

In Table 4, the analysis program of this problem is 
shown. The assumed time step of this analysis is 0.008 s 
and to select the proper length, the number of nodes in the 
smallest wavelength is measured (Eq. 14): 

where c is shear wave velocity, Tp is a predominant period, 
S is the distance between nodes, which is half of the ele-
ment length, and N is the number of nodes on the smallest 
wavelength (Fig. 11).

The test results (Fig.  12) show three problems with 
velocities of 400, 600 and 700 m/s; if the length of the ele-
ment is chosen in such a way that at least eight nodes are 
placed in the smallest wavelength, the results are obtained 
with acceptable accuracy and the results of the FEM match 
with those of the half-plane BEM. This conclusion is same 
as that suggested by Kuhlemeyer and Lysmer [38] for 1D 
site response analysis. Therefore, the maximum distance 
between nodes can be determined by the following equation:

6.2  Time Step

Selecting a proper time step is one of the effective param-
eters in calculating the accuracy of the results. This variable 
is not only effective on the accuracy of the results but also 
plays a key role in the volume of computations. To deter-
mine the optimal time step, first the maximum distance 
between nodes is calculated and then the � parameter is 
defined as Eq. 16 based on the velocity of shear wave c, time 
step Δt , and the maximum distance between nodes Smax . 
This parameter shows the number of elements that passed 
through the seismic wave:

By placing Smax equation in Eq. 16, the � parameter is 
simplified as follows. In this relation, � depends on the pre-
dominant period and time step:

The effect of this parameter is plotted at different 
velocities.

As seen in Fig. 13, for � ⩽ 36% the results obtained from 
FEM show good agreement with those of BEM. Since these 
results are independent of the shear wave velocity, the maxi-
mum time step can be obtained by replacing the maximum 

(14)N =
c × Tp

S
,

(15)Smax =
c × Tp

8
.

(16)� =
c × Δt

Smax
.

(17)� =
8 × Δt

Tp
.

Fig. 10  Geometry and meshing the 2D site on rigid bedrock

Table 4  The analysis program 
of FEM to determine the proper 
length of the element

c (m/s) S (m) N

1 400 25 5
2 400 16.67 8
3 400 12.5 10
4 400 10 13
5 400 7.14 18
6 700 50 4
7 700 25 9
8 700 16.67 14
9 700 12.5 18
10 600 50 4
11 600 33.333 6
12 600 25 8
13 600 12.5 16
14 600 10 20

Fig. 11  Schematic layout of the parameters of Eq. 14
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value of � in Eq. 17. Equation 18 shows that the maximum 
time step is equivalent to 0.045Tp:

(18)Δt ⩽ 0.045Tp.

To verify Eqs. 15 and 18 in damping conditions, a one-
dimensional example with dimensions 6000 m × 50 m 
is solved by assuming shear wave velocity of 300 m/s, 
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Fig. 12  The displacement time history in a central point on the ground surface with different element lengths
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Fig. 13  Displacement time history in a central point on the ground surface with different time steps
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predominant period of 1/3 s, time shift of 0.9 s and the 
maximum amplitude of the displacement time history of 
0.0001 m. Using Eq. 15, the maximum distance between 
the nodes is calculated 12.5 m. The results are compared 
with Plaxis in different time steps. The analysis results in 
Fig. 14 show that there is a good agreement between the 
results at a time interval of 0.015 s. This is a time step 
equal to the proper time step of Eq. 18. Therefore, it can be 
said that the presented relationships for the length of the 
element and the appropriate time step can be generalized 
in the conditions of the damping of the materials.

6.3  Order of Numerical Integration

In numerical methods, the selection of integration method 
with proper ordering is one of the important issues. This 
selection has a significant effect on the cost of analysis and 
the accuracy of the result. Since in FEM stiffness, mass, 
surface, and volumetric forces are calculated by numerical 
integration method, in some studies, suggestions have been 
made in this regard. For instance, Bathe [36] proposed that 
in some cases to have more accurate mass matrix, it is pos-
sible to use a higher integration order in mass matrix com-
pared to stiffness matrix. Therefore, in this section, the effect 
of the integral order is discussed.

In this program, a Gaussian integral method is used to 
calculate stiffness, mass, and force matrices. The program 

compares the results of this method at two different veloci-
ties of 400 and 700 m/s and with the damped and undamped 
materials. The damping ratio is assumed to be 0.05 in 
damped material conditions. In this comparison, three 
groups of integration order are chosen for the integral stiff-
ness and mass matrices as follows:

1. Integration order of 3 × 3 (9 GPs) to the integration of 
stiffness and mass matrices.

2. Integration order of 3 × 3 (9 GPs) to the integration of 
stiffness matrix and integration order of 4 × 4 (16 GPs) 
to the integration of mass matrix.

3. Integration order of 4 × 4 (16 GPs) to the integration of 
stiffness and mass matrices.

The results in Fig. 15 indicate that in different conditions 
of velocity and damping of the material for eight-node ele-
ments, the integral order over 3 does not have an effect on 
the accuracy of the results, and choosing a higher order in 
integrating the mass matrix over the stiffness matrix does 
not increase the accuracy of the results.

6.4  Newmark’s Integration Coefficients

In this study, the Newmark integration method is used to 
solve the problem. In this method which is indeed the expan-
sion of the linear acceleration method, the choice of two 
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Fig. 15  Effect of the number of GPs on the displacement time history in the central point on the ground surface

Table 5  The FEM analysis plan 
for evaluating the effect of each 
of NCs
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Fig. 16  Effect of NCs on the displacement time history in a central point on the ground surface
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parameters α and δ plays a fundamental role in the accuracy 
of the integration and stability of the method. Considering 
the importance of achieving accurate results, in this section, 
we investigate the effect of these parameters on different 
velocities, damped, and undamped materials. For this pur-
pose, six groups of NCs are used (Table 5). In the first three 
groups, the value of � is equal to 0.5 and in the other three 
groups, � is assumed to be 0.6. Also, the damping ratio is 
considered to be 5% in damped material conditions.

In Fig. 16, the results of solving the problem of SH 
wave propagation at two velocities of 400 and 700 m/s 
are shown. Comparison of the results of these six groups 
shows that the use of NCs of the second three groups in 
both damped and undamped conditions and at different 
velocities results in an amplitude drop. However, the dif-
ference is sharper in the undamped conditions. This result 
is in agreement with the explanations of Bathe [36] regard-
ing the choice of � > 0.5 for the reduction of the amplitude.

Moreover, the use of NCs of the first three groups pro-
vides more favorable results, so that under undamped con-
ditions, the results of FEM are consistent with those of 
half-plane BEM.

Another point that can be seen in Fig.  16 is that a 
change in � value at all conditions including damped, 
undamped, and various velocities has no effect on the 
results and only the value of � as previously described, 
changes the results and reduces the amplitude.

6.5  Shape Ratio

In this section, the effect of alluvial valley geometry at 
400 m/s shear wave velocity and 5% damping ratio is evalu-
ated with mentioned properties of the input wave. The 
depth of alluvial valley is denoted with h, which is 75 m 
and half of the valley’s width, b = 300, 150, 100, 75, 50 , 
and 37.5 m. Shape ratio (SR) is defined as the ratio of depth 
to half width.
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Fig. 17  The displacement time history in a central point on the ground surface in various SRs
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Fig. 18  Amplification variations in terms of SR along the rectangle-shaped alluvial valley
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Figure 17 illustrates the displacement of the central point 
of the alluvial valley on the ground surface in various SR 
(0.25, 0.5, 0.75, 1, 1.5, and 2) compared with the displace-
ment of the one-dimensional site. As shown in Fig. 17, a 
decrease in SR or reducing reduction in the depth of the 
valley leads to decrease in response amplitude so that in 
SR = 0.25, the response pattern is close to ground surface 
response of one-dimensional site.

Figures 18 and 19 present the amplification of valley sur-
face in the frequency domain and various SRs. To present 
the results in this converted space, dimensionless frequency 
� =

�b

�c
 was defined, where � is dimensionless frequency, 

� is the angular frequency of the incident wave, c is the 
velocity of the shear wave, and b is half width. As shown 
in figures, in very low frequencies, � = 0.25 amplification 
potential is negligible in various SRs. However, in low fre-
quencies, amplification potential is significant in high SRs 
and by increasing the frequency, the amplification potential 
is increased in small SRs. It can show the reverse relation-
ship of frequency and SR and a decrease in SR results in 
an increase in frequency (small wavelength). This result 
is in agreement with the results of other researchers that 
the significant effects of topography on seismic waves are 
observed when the incident wavelengths with the size of 
the topographic features are comparable [39–45]. In addi-
tion, in Fig. 19, the maximum amplification is 18.5, which 
is close to 29% lower than the Najafzadeh results [17] for 
the rectangular valley exposed to shear waves SV. This result 
demonstrates that SH shear waves have a smaller amplifica-
tion than SV shear waves.

7  Conclusion

In the present study, an advanced formulation of FEM was 
presented for the 2D analysis of the seismic response of allu-
vial valleys located in a semi-infinite rigid space subjected 
to propagating incident SH waves in the time domain. The 
accuracy, efficiency, and ability of this formulation were 
demonstrated by analyzing the responsiveness of a 1D site 
and a 2D site. Then some numerical considerations in the 
dynamic analysis of this topographic feature were performed 
using parametric study on the seismic response of alluvial 
valley under propagating incident SH waves.

The results confirmed once again that

– the maximum distance between nodes should be equal to 
one-eighth of the smallest wavelength [38];

– the amplification ratio depends strongly on the shape 
ratio as well as the nondimensional frequency [17];

– the effect of a feature on the ground response is only 
noticeable if the wavelengths are comparable with the 
dimensions of the feature. If the dimensionless frequency 

is small (the wavelength of the incident wave is large), 
the effect of the feature will be significant only on the 
high SRs [39–45].

The results indicated, too, that

– if the maximum distance is between the nodes, the maxi-
mum value that can be selected as the time step is equal 
to 45/1000 of the predominant period of the incident 
wave;

– choosing a higher order in integrating the mass matrix 
has no effect on the accuracy of the results compared 
to stiffness matrix;

– the choice of � > 0.5 in Newmark’s integration method 
reduces the amplitude, which is particulary evident in the 
results of the problems with the undamped materials;

– Of the two parameters of the NCs, only � is effective 
in the results and a change in the � coefficient does not 
play a role in the accuracy of the results.
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