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Abstract
This paper concentrates on measuring the geotechnical properties of cement peat mixed with different dosages of well-graded
sand as filler. Several geotechnical tests, namely unconfined compression strength (UCS), California bearing ratio (CBR) and
compaction, were performed on the treated fibrous peat samples. The filler was used in a wide range of 50 to 400 kg/m3 of wet
peat. In addition, time-dependent changes of geotechnical properties of treated peat were also studied after 14, 28 and 90 days of
air curing. Besides, different artificial neural networks trained by a back-propagation algorithm (ANN-BP) and particle swarm
optimization method (ANN-PSO) were used to estimate the UCS of stabilized fibrous peat. Results indicate that after a 90-day
curing period, the UCS and CBR of treated samples with 300-kg/m3 cement only, increased by a factor as high as 8.54 and 13.66,
respectively, compared to untreated peat. Besides, in the compaction tests, adding filler content to the cement peat increased the
maximum dry density (MDD) significantly. In addition, the results of soft computing techniques indicated that the performance
indices of the ANN-PSO model was better compared to the ANN-BP model. Finally, sensitivity results showed that the filler
content and curing time were the most influential factors on estimating UCS.
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Introduction

Fibrous peats are an unconsolidated organic material since
they are loosely arranged and their particles are not cemented

together. Mostly, they have accumulated under water in acidic
conditions (Huat et al. 2014). These problematic soils can be
found throughout the world. Almost 8% of the Earth’s land is
coved with peat (Mesri and Ajlouni 2007). These soils are
classified as fibrous when the fiber and organic content is
more than 66% and 75%, respectively (ASTM 2000). In sub-
grade construction, they are generally considered as problem-
atic soils because of their high compressibility and low shear
strength properties in their natural state (Huat 2004). These
kind of soils cannot be useful for foundation floors (Edil
2003). In particular, these extremely acidic soils are made of
organisms, animals and fresh fibers (Kalantari and Prasad
2014). As a result, high permeability, high rates of creep and
low pH are the other geotechnical properties of the peats.
Additionally, due to high in situ void ratios of the peats (7.5
to 30), the in situ water content of these soils ranges from 500
to 2000%, respectively (Moayedi et al. 2014).

A great volume of research works has been performed to
evaluate the effect of cement on the strength properties of
peats (Table 1). However, the research to date has tended to
focus on peat soil stabilization using different binders rather
than filler effect. Regarding the filler effect, Celik and Canakci
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(2014) evaluated the geotechnical characterizations of fibrous
peat mixed with natural filler. In their study, the effects of filler
dosages on compaction, shear strength and compressibility of
fibrous peat were investigated. In the sample preparation, the
untreated soil was mixed with filler at its maximum dry den-
sity (MDD) and optimum water content (OWC). Their results
indicate that when the sand content increases in the peat, in-
ternal friction angle increases while the cohesion of the peat is
reduced.Moreover, the compression ratio of the fibrous peat is
marginally reduced when the filler content is increased.

The objective of this study is to discuss the effects of nat-
ural filler dosages on the geotechnical characterization of the
treated peat samples. In addition, this study focuses on finding
the optimum or proper filler range to improve the engineering
properties of fibrous peat stabilized with cement using differ-
ent geotechnical tests. Finally, an expert artificial neural net-
work (ANN) trained with particle swarm optimization method
is employed to estimate the UCS of treated peat samples from
the other geotechnical properties such as California bearing
ration, cement content, filler content, MDD and optimum wa-
ter content.

Experimental study

In this study, Undisturbed and disturbed peat samples were
obtained from the Pontian area of the state of Johor in
Malaysia. To get the undisturbed peat samples a special cylin-
drical tube with an internal diameter of 150 mm and with a
height of 230 mm was used. Based on Von Post (Von 1992)
classification system the peat was H3. In the present study, a
total of 11 tests on unimproved peat samples and 90 tests on
the stabilized peat samples were prepared at various binder
compositions and dosages. It should be noticed that, in order
to evaluate the filler effect, all the stabilization tests were car-
ried out with fixed cement content of 300 kg/m3 relative to wet
mass of peat with different dosages of fillers. This amount was
derived based on previous studies on the UCS of treated sam-
ples (Dehghanbanadaki et al. 2017). In case, we performed
unconfined compressions (hereafter UCS) tests based on BS
1377:1990: Part 7: section 7 (British Standard Institution
1990) under strain control condition with the rate of
0.0125 mm/s. California bearing ratio (CBR) tests and com-
paction tests were carried out on treated samples based on
ASTM D 1883-07E02 and ASTM D-698 ( 1992), respective-
ly. In this research, for each experimental test two samples
were prepared cured and tests and the average result of the
tests was considered as final result. Table 2 summarizes the
geotechnical properties of materials used in this study. Table 3
shows the detail of mix designs of each test. Grain size distri-
butions of fibrous peat and filler used in this study are shown
in Fig. 1 while, Fig. 2 demonstrates the sample preparation in
this research. It should be mentioned that the details of sample

preparation for the tests can be found in previous publication
(Dehghanbanadaki et al. 2017).

Simulation by ANN models

Details of ANN

ANNs are considered very powerful tools to estimate any
indistinct functional data (Rojas 2013; Maren et al. 2014;
Baughman and Liu 2014). Therefore, for the estimation pur-
poses, we used MATLAB R2016a software (nftool) to train

Table 2 Properties of the peat, filler and cement used in this study
(Dehghanbanadaki et al. 2013 & Dehghanbanadaki et al. 2017)

Peat

Item Results

WC % 495

OC (%) 91

pH 4.1

Classification Fibrous (H3)

Unit weight (kN/m3) 10

Permeability (m/day) 0.89

Specific gravity 1.38

Cc 3

Cα (average) 0.065

LL 260

Cu – VST (kPa) 11

Cu – UCS (kPa) 10

FC (%) 80

Void ratio 11

Filler (SW)

Item Results

MDD 17.51

Friction angle 36.8

Minimum void ratio 0.32

Specific gravity 2.64

Fineness modulus 2.81

Cement

Item Content (%)

CaO 68.6

SiO2 21.6

Al2O3 5.3

Fe2O3 3.3

MgO 1.1

SO3 <0.01

Na2O <0.01

K2O <0.01

Note: WC: in situ water content of the peat; OC: organic content; VST:
vane shear test, Cc: compression index; Cα: secondary compression in-
dex; LL: liquid limit; Cu: undrained shear strength; FC: fiber content;
MDD: maximum dry density (kN/m3 )

Prediction of geotechnical properties of treated fibrous peat by artificial neural networks



and develop different ANN models. Briefly, different multi-
layer feed-forward perceptron (MLP-FF) networks trained by
Levenberg–Marquardt (LM) backpropagation (BP) were
adopted, while for the transfer function, we selected a logistic
sigmoid function. In theMLPmodels, CBR, curing time, filler

content, OWC and MDD were considered as inputs, whereas
UCS was selected as the target of the ANN. In data
classification, we followed the method proposed by Shahin
et al. (2004) with 70% of data for training, 15% for validating
and 15% for testing was considered. Finally, for error analysis,
we used mean square error (MSE) and a coefficient of corre-
lation (R). The MLP details of this study are shown in Fig. 3.

Implementation of particle swarm optimization
in MLP training

One of the drawbacks of the BP algorithm is a slow training
rate and trapping in local minima (Jadav and Panchal 2012;
Momeni et al. 2014). Several smart and evolutionary algo-
rithms such as particle swarm optimization (PSO) algorithm,
imperialist competitive algorithm (ICA), genetic algorithm
(GA), bacterial foraging optimization technique (BFOT) and
bee colony (BC) algorithm can be applied as a training
methods in ANNs (Nanda and Panda 2014; Sun and Xu
2016) . These popula t ion-based algor i thms wi th

Table 3 Mix designs of the
stabilized peat specimens Number of tests Test details Curing time (days)

5 UCS: UP –

21 UCS: UP + C (150, 200, 250, 300,325, 350 and 400 kg/m3) 14, 28 and 90

3 UCS: UP + C (300 kg/m3) 14, 28 and 90

3 UCS: [UP + C (300 kg/m3)] + F (50 kg/m3) 14, 28 and 90

3 UCS: [UP + C (300 kg/m3)] + F (75 kg/m3) 14, 28 and 90

3 UCS: [UP + C (300 kg/m3)] + F (100 kg/m3) 14, 28 and 90

3 UCS: [UP + C (300 kg/m3)] + F (125 kg/m3) 14, 28 and 90

3 UCS: [UP + C (300 kg/m3)] + F (175 kg/m3) 14, 28 and 90

3 UCS: [UP + C (300 kg/m3)] + F (200 kg/m3) 14, 28 and 90

12 Compaction: UP + C (150, 200, 250, 300 kg/m3) 14, 28 and 90

3 Compaction: UP –

3 Compaction: UP + C (300 kg/m3) + F (50 kg/m3) 14, 28 and 90

3 Compaction: UP + C (300 kg/m3) + F (100 kg/m3) 14, 28 and 90

3 Compaction: UP + C (300 kg/m3) + F (150 kg/m3) 14, 28 and 90

3 Compaction: UP + C (300 kg/m3) + F (200 kg/m3) 14, 28 and 90

3 CBR: UP –

3 CBR: UP + C (300 kg/m3) 14, 28 and 90

3 CBR: UP + C (300 kg/m3) + F (50 kg/m3) 14, 28 and 90

3 CBR: UP + C (300 kg/m3) + F (75 kg/m3) 14, 28 and 90

3 CBR: UP + C (300 kg/m3) + F (100 kg/m3) 14, 28 and 90

3 CBR: UP + C (300 kg/m3) + F (125 kg/m3) 14, 28 and 90

3 CBR: UP + C (300 kg/m3) + F (150 kg/m3) 14, 28 and 90

3 CBR: UP + C (300 kg/m3) + F (175 kg/m3) 14, 28 and 90

3 CBR: UP + C (300 kg/m3) + F (200 kg/m3) 14, 28 and 90

• UP: untreated peat, C: cement, F: filler, UCS: unconfined compression strength, CBR: California bearing ratio.

• UP + C (300 kg/m3 ) = untreated peat mixed with 300-kg/m3 cement only.

•UP+C (300 kg/m3 ) + F (50 kg/m3 ) = at first: untreated peat mixedwith 300-kg/m3 cement then 50 kg/m3 well-
graded sand as filler was added to the mixture.

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10

Pe
rc

en
t f

in
er

 (%
)

Particle size (mm)    

Well graded sand (SW)

Fibrous peat
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approximately similar concepts can improve the performance
of the ANN models. Each agent in the population competes
and shares the information to achieve certain tasks and better
performance (Rahmanian et al. 2012). Consequently, in this
paper, we selected PSOwhich is a population-based stochastic
algorithm to increase the accuracy rate of the best ANN-MLP
(BP) model. This smart algorithm was first proposed by
Kennedy and Eberhart (1995). The training improvement per-
formance of ANN-MLP models using PSO technique have
been proven by several researchers (Zhang et al. 2007;
Zamani and Sadeghian 2010; Hajihassani 2013; Sun and Xu
2016). the following items briefly show the implementation of
the PSO algorithm in training of MLPs.

& Determination of PSO parameters (pre-defined coefficients,
acceleration constants & coefficient of inertia weight)

& Random population of ANN weights & biases using
vector-encoding technique

& Evaluation of cost function –MSE (mean square error) of
ANN trained by BP

& Finding the local & global best of each particle
If:

& Improvement in fitness for a certain number of iterations is
not observed = termination

& Using ANN-PSO
Else:

& Updating the particles

Disturbed peat soil sampling 

Cement dosages (just for UCS tests): 
50, 75, 125, 150,150, 175 and 200 kg/m3

CBR & compaction tests: 300 kg/m3

Calculation the needed binder 
and filler amount  

Air dried peat 2mm sieved peat 

Homogenizing the wet peat with 
moisture content of 495% 

Treated peat sample with 
cement and filler Filler dosages: 

50, 75, 125, 150,150, 175 and 200 kg/m3

Curing periods: 
14, 28 and 90-day 

(air curing) 

Fig. 2 Sample preparation in this
research (Dehghanbanadaki et al.
2017)
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Results and discussions

UCS tests results

Figure 4 shows the UCS of treated peat samples at different
cement dosages after 14-, 28- and 90-day curing periods. As
can be seen, since the initial water content of the peat is fixed
during the stabilization process, when the cement content was
in the range of 150 to 200 and 300 to 400, no improvement in
UCS was observed. Besides, it is evident from past studies that
the UCS of treated peat samples with 300-kg/m3 cement dos-
ages should give higher shear strength compared to this re-
search (Axelsson et al. 2002; EuroSoilStab 2002; Hebib and
Farrell 2003; Alwi 2008, Kalantari et al. 2010; Motamedi et al.
2015). A possible explanation for this difference might be that
the fibrous peat soil in this research has a high organic content
of 91% which can impede the cement stabilization process
significantly. In contrast, the achieved UCS values of treated
peat samples were consistent with the results of Hashim and

Islam (2008). They stabilized the Malaysian fibrous peat with
low shear strength (UCS = 2 kPa) and high organic content
(96%) with 300-kg/m3 cement + sodium bentonite (85:15) +
25% sand an using air-curing technique. They gained 37 kPa
for the UCS of treated peat after 7-day air curing. To evaluate
the degree of improvement of the stabilized soil, the UCS re-
sults were compared to Table 4 as proposed by Terzaghi et al.
(1996). The optimum amount of filler content to increase the
strength of cement peat was determined to be 125 kg/m3 based
on previous research of the first author (Dehghanbanadaki et al.
2013). Therefore, using this optimum amount (125 kg/m3)
mixed with 300-kg/m3 cement increased the UCS of untreated
peat up to 944% after a 90-day curing time. This finding cor-
roborates the results of Wong et al. (2013).

CBR and compaction tests results

The trend of CBR changes of cement peat mixed with various
percentages of filler content is presented in this section.
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Fig. 3 MLP model of this study.
Note: CBR =California bearing
ration, CT = curing time, OWC=
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Figure 5 illustrates the variations of CBR values of cement
peat with 300-kg/m3 cement mixed with different dosages of

filler cured for 14, 28 and 90-day. The horizontal lines
represent the CBR of peat and cement only. For standard
CBR, the CBR of natural fibrous was found at 3%. This
value reached to 21% using optimum cement content in
14-day curing, which is seven times higher than the orig-
inal value. Over more curing time the CBR values in-
creased to 36% and 41% in 28 and 90-day, respectively.
The CBR of untreated peat showed that the soil has poor
Geotechnical properties (0 to 3%). This low CBR of com-
pared to the stabilized samples is mainly attributed to
inherent low shear strength of peats which is due to high
void ratio and less solid particles of these problematic
soils. According to Fig.5, inclusion of the filler content
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Table 4 Consistency classification

Consistency UCS (kPa) This study

Very soft < 24 20 (untreated)

Soft 24-50

Medium 50-100

Stiff 100-200 170 (improved)

Hard 200-400
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Fig. 7 Variation of filler effect on the UCS of treated samples with (a): CBR, (b): MDD and (c): OWC
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in the cement peat mixture did not show any optimum
amount. By adding the filler amount from 50 kg/m3 to
200 kg/m3 the CBR values of treated peat increased
sharply. For an example, using 200 kg/m3 filler in com-
parison of cement peat, the CBR increased from 41% to
58.6% in 90 days curing period. In comparison with un-
treated soil, the CBR of cement peat mixed with 200 kg/
m3 filler content was increased by a factor as high as 19.4
times. The results of this analysis imply that for stabilized
peat samples with more than 200 kg/m3 filler dosages,
higher CBR value can be expected.

Figure 6 shows the MDD/moisture content relationship
of cement peat samples and cement peat samples mixed
with different filler dosages. For example, in the case of
125-kg/m3 filler content, OWC and MDD for untreated

peat was found to be 135% and 0.42 Mg/m3, respectively.
It should be noticed that the trend of untreated peat in
compaction tests differs from some published studies
(Kolay et al. 2011). These differences can be explained
by the texture of the peats which they are significantly
site-dependent. As shown in Fig. 6, for peat samples treat-
ed with cement, an increase in cement content resulted in
an increase of MDD and decrease in OWC. In addition, it
was observed that when filler content increased, in com-
parison with cement peat only, the MDD increased while
OWC reduced. In this case, the increase in MDD could be
mainly due to increasing the solid particles of treated peat.
For example, in comparison between C300 and C300 +
F200, the MDD of stabilized peat increased from
0.97 Mg/m3 to 1.03 Mg/m3, while the OWC decreased
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from 51% to 45%. This decrease in OWC may be ex-
plained by the fact that, due to an increase in the solid
particles in the stabilized peat samples, the number of peat
particles became less. Therefore, the rate of water

absorption by peat particles decreased significantly.
Finally, for the comparison purpose, Fig. 7 shows the
combination effects of FC with (a): CBR, (b): MDD and
(c): OWC on the UCS of treated samples.

Fig. 10 Regression indices of the
best ANN-PSOmodel (5 × 12 × 1)
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ANN results

As mentioned before, in the simulation process of the
ANNs, just one hidden layer including different hidden
neurons was used. Figure 8 a, b shows the performances
of different ANN models from model-1 (5 × 1 × 1) to
model-16 (5 × 16 × 1) trained by the BP algorithm. It
should be indicated that in Fig. 9a, b the results of MSE
and regression indices are the average of train, validation
and test data. As can be seen in Fig. 8a, by increasing the
number of hidden neurons from 1 to 11 the MSE de-
creased sharply, while from model-12 to model-16 ap-
proximately, the MSE remained constant. Moreover, in-
creasing the number of hidden neurons more than 12 did
not improved the performance of the ANN significantly.
Accordingly, based on Fig. 8b, the regression indices of
the models raised by the increase of the hidden neurons.
Consequently, from Fig. 8a, b, the best ANN-BP model
was selected as model-12 with an MSE = 2.143 and R =
92.8. After determination th of best ANN-BP model, the
PSO algorithm was applied for improving the perfor-
mance of the selected model. Regarding this, different
swarm sizes of 25 to 500 were selected and evaluated
for the training process. Meanwhile, when the swarm size
(number of agents) increased, the needed time to find the

best cost function and best particle position increased, as
shown in Fig. 9. Therefore, we selected 300 for the opti-
mum number of particles. Of note, in the training process,
the number of iterations was determined by trial and error
tests. For example, in all models after 350 iterations, the
decrease rate of cost function (MSE) remained constant.
Besides, for the particles updating, based on suggestions
of Shi and Eberhart (1999), acceleration constants were
chosen as (C1 = C2 = 2). Figure 10 shows the regression
indices of the best ANN-PSO model. As can be seen, the
average of regression indices was 1, 0.996 and 0.99 for
training, validation and test data, respectively. In addition,
by using the PSO learning algorithm, the average MSE of
ANN-BP decreased from 2.143 to 0.73. It should be men-
tioned that the results training ANN-BP model with a
PSO technique of this study was compatible with the re-
sults of previous researchers (Zhang et al. 2007;
Hajihassani 2013; Sun and Xu 2016).

Sensitivity results

After determination of the best ANN-PSO model, the sen-
sitivity analysis was performed using two different
methods, namely Garson’s algorithm (Garson 1991) and

Table 6 Weights of the best ANN-PSO (hidden to target layer)

N-1 N-2 N-3 N-4 N-5 N-6 N-7 N-8 N-9 N-10 N-11 N-12

1.014 −0.539 0.496 −0.698 1.012 0.459 0.602 0.436 0.467 −0.134 0.368 −0.515

Note: N – 1 = neuron number one

Table 5 Weights of the best
ANN-PSO (input to hidden layer) Items Input – 1 (CT) Input – 2 (CBR) Input – 3 (FC) Input – 4 (MDD) Input – 5 (OWC)

N-1 −0.6799 0.3861 2.2683 −0.2556 −0.426
N-2 −2.4176 −0.5843 0.3873 −2 −0.4817
N-3 1.2871 1.305 −1.2879 −1.0671 0.7759

N-4 1.3237 1.3227 1.9525 −0.5788 −1.9293
N-5 1.6131 0.8813 0.9755 −0.6561 −0.0051
N-6 −0.1277 −1.5509 −0.2891 1.4241 0.1116

N-7 −3.0236 0.1245 −1.4531 −2.1145 0.8234

N-8 1.5703 −0.2498 1.1623 −0.7946 0.3969

N-9 0.0648 −1.1734 −1.4146 −0.5297 −1.3481
N-10 1.2922 −1.2642 −0.3751 0.9055 −0.1274
N-11 0.7684 −0.5837 −1.9875 −0.6265 −1.128
N-12 −2.0329 0.4457 1.4819 0.4029 −1.3905
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the connection weight approach (Olden and Jackson 2002).
These algorithms use the weights of input the to hidden
layer and hidden to the output layer of the best ANN model.
The outputs of weights and biases can be extracted by pre-
defined commands in MATLAB software (2016). Tables 5
and 6 illustrate the details of the weights of the best ANN-
PSO model of this study. Figure 11 establishes the results of
aforesaid algorithms on the hidden weights of the best
ANN-PSO model which is called sensitivity analysis. As
can be seen, in both methods, CT and FC were introduced
as the most important parameters in the estimating of UCS
of treated fibrous peat. To be noticed, in reality, the texture
of CBR and UCS are closer to each other in comparison
with FC and CT. On the other hand, as mentioned in basic
test results (Table 2), the untreated fibrous peat soil used in
this study had an average void ratio of 11. Therefore, it
could be expected that FC increases the UCS as high as
CBR. As can be seen in Fig. 11 based on these two men-
tioned methods, no significant difference between parame-
ters was seen. For example, in Garson’s algorithm, just a
5% difference was observed between FC and CBR. On the
other hand, it was interesting that in both methods, OWC
had the minimum effect on the UCS. It can be concluded
that in sensitivity analysis, both methods showed approxi-
mately similar trends.

Conclusions

In this study, the geotechnical characteristics of cement-
stabilized peat mixed with filler were investigated using
UCS, CBR and compaction tests. Also, different ANN

modes trained by back-propagation and particle swarm op-
timization methods were utilized to estimate UCS of treated
peat samples. Finally, sensitivity analysis was performed to
evaluate the most important parameters on the UCS of treat-
ed samples. The results indicated that to achieve the highest
undrained shear strength in the UCS tests, 300-kg/m3 ce-
ment was determined as the optimum cement content at
the natural water content of the peat. By using filler, the
undrained shear strength of cement-treated peat increased
slightly. In the cases of CBR tests, the role of filler was
more comparable to the other tests. In these tests, by adding
the filler content to the mixture of cement peat, the CBR
values increased significantly. Additionally, in compaction
tests, the MDD of cement-stabilized peat decreased with
the increase in cement content while the OCW reduced.
This trend repeated in the tests using filler too. Moreover,
results of soft computing methods showed that ANN-PSO
models had better performance than ANN-BP. The best
ANN-PSO model had an MSE = 0.73 and the average re-
gression index of around one (1, 0.996 and 0.99 for training,
validation and test data, respectively), showing the high per-
formance of the model. Finally, sensitivity analysis intro-
duced filler content and curing time as the most influential
factors in the estimation of UCS of treated peat samples.
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Appendix

Table 7 Database used for ANN
Test no. CBR (%) CT (day) OWC (%) MDD (Mg/m3) FC (kg/m3) UCS (kPa)

1 17 14 24 0.73 24 111

2 19 14 28 0.75 28 117

3 25 14 30 0.88 30 121

4 28 14 39 0.93 39 125.4

5 31 14 49 0.83 49 113

6 37 14 64 1 64 95

7 41 14 79 0.76 79 67

8 18 14 24 0.78 24 112

9 21 14 27 0.73 27 116

10 23 14 29 0.82 29 120

11 27 14 37 0.94 37 124

12 29 14 44 0.82 44 112

13 36 14 63 0.99 63 95

14 39 14 77 0.78 77 64

15 20 28 28 0.82 28 121

16 27 28 31 0.84 31 140.6

17 30 28 33 0.91 33 160

18 34 28 41 1.023 41 178

19 37 28 52 0.93 52 155

20 44 28 67 0.88 67 111

21 49 28 81 0.83 81 107

22 21 28 29 0.83 29 118

23 28 28 32 0.85 32 139

24 32 28 32 0.92 32 159

25 35 28 40 1 40 177

26 38 28 51 0.94 51 156

27 45 28 68 0.89 68 112

28 48 28 82 0.82 82 108

29 30 90 32 0.93 32 131

30 33 90 36 0.94 36 173

31 38 90 37 1.02 37 182

32 43 90 44 1.1 44 189

33 47 90 56 1.02 56 169

34 51 90 74 0.97 74 121

35 58 90 90 0.9 90 116

36 31 90 33 0.94 33 132

37 34 90 35 0.95 35 172

38 39 90 38 1.04 38 183

39 44 90 45 0.98 45 189

40 48 90 55 0.97 55 172

41 52 90 75 0.96 75 122

42 59 90 89 0.91 89 114
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