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Abstract—This paper presents a technique, based on discrete 

wavelet transform (DWT) and back-propagation neural network 

(BPNN), to find the fault location on single circuit transmission 

lines. The proposed method has been applied to IEEE 9-bus test 

system. In order to go through this, MATLAB was used to apply 

DWT on the signal of fault currents of all the existed generators. 

The Daubechies Four (db4) mother wavelet is employed to 

decompose the high-frequency component of fault signals. The 

norm of detail coefficients of five decomposition levels for all fault 

current signals was selected as input pattern for the training 

process of a BPNN. The obtained results show that trained BPNN 

can be used as a proper tool to detect the location as well as the 

type of the occurred faults on the system, with a reasonable 

accuracy. 

I. INTRODUCTION 

Fault location estimation is important in a power system in 
order to clear faults from transmission lines and to restore 
supply as soon as possible with minimum interruption. 
Distance relays respond to a ratio of voltage and current at the 
relay location. This ratio is in the form of impedance. Besides, 
the impedance of a transmission line is proportional to its 
length, for distance measurement. Thus, it is appropriate to use 
a relay that is capable of measuring the impedance of a line up 
to a predetermined point. In the early 1980’s, the most 
effectiveness technique to locate fault location has been 
proposed based on travelling wave [1-3]. Although, travelling 
wave technique can give precise results in fault location, 
however, a high sampling rate is required, in addition to, the 
concern existed on distinguish between traveling waves 
reflected from the fault point and from the remote end of the 
line [4]. In order to overcome this problem, the wavelet 
transform (WT) of the fault transients was initially proposed in 
[5]. Although the WT is very effective in detecting and 
extracting transient events, it may not be adequate to complete 
the characterization. 

Furthermore, during the recent years, development of fault 
diagnosis has been progressed with the applications of signal 
processing techniques and back-propagation neural networks 
(BPNNs) [6]. 

This paper aims to present a development of a new decision 
algorithm used in the protective relays, in order to locate fault 
location. The current waveforms obtained from the simulation 

are extracted using the WT by MATLAB. The proposed 
decision algorithm, presented in this paper, is constructed based 
on the BPNN. The BPNN inputs are selected as the norm of 
detail coefficients of decomposed current signals that will be 
discussed in the following. 

II. WAVELET ANALYSIS 

WT is a well-suited tool for processing transient signals 
which are non-stationary and non-periodic wide-band signals. 
It decomposes a signal in terms of oscillations (wavelets) 
localized in both time and frequency. As Fourier analysis, WT 
consists in decomposing a given function onto a set of 
“building blocks”. However, in contrast to Fourier transform 
(FT), in which the “building blocks” are the well-known 
complex exponentials, WT uses the dilated and translated 
version of a “mother wavelet” which has convenient properties 
according to time/frequency localization [7]. 

WT, also, has a special feature of variable time-frequency 
localization which is different from the windowed Fourier 
transform (WFT). Wavelet algorithms process data at different 
scales so that they may provide multiple resolutions in 
frequency and time. This ability mainly being used in this 
study to detect, classify and locate the faults. This property of 
multi-resolution is particularly useful for analyzing fault 
transients, which contain localized high-frequency component 
superposed power frequency signals. For a continuous input 
signal, the time scale parameters can be continuous, leading to 
a continuous wavelet transform (CWT). On the other hand, 
discrete wavelet transform (DWT) can also be defined for 
discrete time signals. Using the DWT, it is possible to 
decompose a signal into several signals in different frequency 
bands, which are known as wavelet coefficients. A good 
comparison of WFT and DWT can be found in [8]. 

In DWT, the mother wavelet Ψ is translated and scaled by 

choosing the scale and translation parameters a=a0
m
 and 

b=nb0a0
m
 respectively, where a0 (>1) and b0 (>0) are fixed real 

values and m and n are positive integers. DWT of a discrete 

sampled signal X(k) is mathematically defined as: 
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By (1), the main signal is separated into approximation 

part (a1, a2, a3, …) and detail part (d1, d2, d3, …). The 

approximation part is the main part of the signal and includes 

low-frequency components while the detail part includes high-

frequency components. This trend of detail and approximation 

continues to each level of analysis. At each level of this 

successive decomposition, the parameter m in (1) is 

incremented to increase the frequency resolution. Good 

reviews of wavelets can be found in [8-10]. 

The frequency bands filtered out by DWT at each level are 
in accordance with the Mallat algorithm and Nyquist’s rule. 
Based on the Nyquist theorem (which states that the highest 
frequency  which  can  be  accurately  represented  is  less than 
one-half of the sampling rate), the maximum frequency of 
original signal X(k) sampled at F Hz is F/2 Hz [11]. Fig. 1 
shows the frequency bands at each level of DWT output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Frequency bands of decomposition levels in DWT 

A sampling rate of Fs=10 kHz was selected for our study 
[12]. However, the basic concept in wavelet analysis is to 
select a proper wavelet, called mother wavelet (analyzing 
wavelet or admissible), and then perform an analysis using its 
translated and dilated versions. In this paper, the Daubechies 
four (db4) mother wavelet is selected to analyze the current 
signals, measured on each of the generators of test system. The 
approach for selecting the mother wavelet and sampling 
frequency was a trial-and-error procedure combined with prior 
experience. The successful application of ‘db4’ for 
characterizing power system transients is reported in [13]. 

III. THEORY OF BACK-PROPAGATION NEURAL NETWORK 

(BPNN) 

NNs are computational structures derived from the original 
biological neural structure of living beings. The basic unit of 
NN is a neuron, and these neurons are interconnected. Each 
neuron can influence other neurons through these connections. 
The level of influence is represented by the strength associated 
with the connection, technically named as the weight of the 
connection. Among the different connection architectures 
available, the most widely used for power system applications 

is the back-propagation type model [14-17], shown in Fig. 2. 
Each unit or neuron processes all the inputs and send the 
output to the next neuron(s) connected to it. 

As shown in Fig. 2, the neurons that are directly connected 
to the inputs are called input layer neurons. The outputs of 
these neurons of the input layer are initially unknown. On the 
other hand, some other neurons, known as the output layer 
neurons are directly connected to the outputs; for these 
neurons the inputs are not known initially. The hidden layer 
neurons thus act as a bridge between the input and output layer 
neurons. Since the initial activation values of many of the 
neurons in the structure are unknown, an iterative procedure 
[17] is used to evaluate the best possible connection weights 
between neurons of the different layers. The iterations are 
based on a given set of input and output (target) pattern pairs, 
called the training sets. 

 
Figure 2.  Back-propagation NN model 

“Back-propagation” algorithm is this organized procedure 
based on error correction through feedback. BPNNs are highly 
effective for pattern recognition. It attempts to minimize error 
by adjusting each value of a network proportional to the 
derivative of error with respect to that value. This is called 
gradient descent. In the back-propagation learning, the actual 
outputs are compared with the target values to derive the error 
signals, which are propagated backward layer by layer for 
updating the synaptic weights in all the previous layers [17]. 
One of the most critical difficulties in constructing the NN is 
the choice of the number of hidden layers and the number of 
neurons for each layer. 

Using too few neurons in the hidden layer may prevent the 
training process to converge, while using too many neurons 
would produce long training time. As well as many hidden 
layer neurons may result in divergence. The optimum 
dimension of hidden layer nodes depends on the following 
conditions: the numbers of input and output nodes, the number 
of training cases, the amount of noise in the targets, the 
architecture, the hidden layer node activation function and the 
complexity of the classification to be learned. 

Signal Sampling 

Rate=F Hz 
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< F/8 Hz 

d1 
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F/16 to F/8 Hz 

d2 

F/8 to F/4 Hz 

a3 

< F/16 Hz 

a1 

< F/4 Hz 
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IV. METHODOLOGY AND STUDY SYSTEM 

In this section, the proposed method for fault location 
analysis is applied to a system study. The IEEE 9-bus test 
system (Fig. 3) is selected as the study system. This system is 
a 400 kV transmission network includes three generators, and 
six lines, in which each line is divided to 20 points equally 
distanced. 

A fault is applied on each of 20 points on the lines, 
separately. On the other hand, totally, 120 faults are applied on 
the network. As majority of faults occurred on transmission 
systems have the low fault impedance, so the fault impedance 
was set to zero in this study. Then, the signals of terminal 
currents of generators G1, G2 and G3, during the fault 
occurrence, were obtained by means of a 10 kHz sampling 
rate. The current signals data are obtained in a sliding-window 
of a quarter of cycle [18] (4.2 ms, 42 samples of currents). 
Therefore, once the fault is occurred, 42 samples of gathered 
data, by means of a 10 kHz sampling rate, are considered, i.e. 
equal 4.2 ms. 

According to [19], by calculating the norm of detail 
coefficients of the first level (d1) for all the currents, the 
phase(s) on disturbance can be identified. If the calculated norm 

 
Figure 3.  Schematic diagram of study system 

value of any phase exceeds a certain threshold, this indicates 
that this phase is exposed to a disturbance. The calculated 
norm of d1 measures the amount of energy content in d1. This 
norm can be calculated as [19]: 
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Where nd is the number of detail coefficients of the first 
level, and d1(k) is the kth coefficient of the detail coefficients 
of the first level. 

To illustrate how a fault can be detected using WT, a 
single line to ground (SLG) fault (phase ‘a’ to ground) on a 
400 kV line is simulated using MATLAB/Simulink. The three 
phase currents are shown in Fig. 4. The calculated norm values 
of d1 for the current of phase ‘a’, ‘b’ and ‘c’ are equal to 

0.0106, 0.0066, 0.0042, respectively, for data window length 
of 210 samples. This samples number was selected to detect 
and classify the faults, due to give a better discrimination 
between faulted phases and healthy phases. It can be noticed 
that the norm of d1 for phase ‘a’ is much higher than the 
values for the other two phases. 

After fault detection and classification, it is necessary to 
extract the characteristics to provide inputs of BPNN. In order 
to do this, the norm of the detail coefficients of decomposed 
current signals was considered as BPNN inputs. To obtain the 
most suitable levels number of WT detail, method was 
implemented for 1, 2, …, 5 levels, in which the best solution 
was obtained with 5 levels. Therefore, the detail coefficients of 
5 levels were obtained as the optimal solution to train BPNN, 
so that the trained BPNN can be used to locate the fault 
location. 

To describe the method, the norm of the 5th level detail 
(d5) coefficients versus fault distance from a generator (G3) is 
illustrated in Fig. 5. As shown in Fig. 5, the far is the fault 
distance from G3, the lower is the norm value of coefficients. 
The BPNN used in this study was consisted of three hidden 
layers either with 20 neurons. The optimal number of neurons 
was determined based on the trial and error approach. The 
transfer functions applied in input, hidden and output layers 
were considered tansig, tansig and purelin, respectively, and 
training algorithm was also trainlm. 

 

 
Figure 4.  Three phase line currents during a SLG fault on phase ‘a’ 

 

Figure 5.  The norm of the 5th level detail coefficients (d5) for G3 
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V. SIMULATION RESULTS 

In order to train BPNN, faults were applied on each of the 120 

nodes of system study. Nodes number is shown in Fig. 3, 

punctuated from G3. Then, data of 85 nodes were analyzed 

and used as the training patterns of BPNN, while the rest 

nodes, i.e. 35 nodes, were used for testing the BPNN. 

According to IEEE Std. PC37.114 [20], error percentage of 
fault location estimation is determined as follows: 

lengthline

valueerror
error =%                                                           (3) 

Some results obtained from the proposed DWT-BPNN 
technique under 3-phase faults are shown in Table I. 
According to the results, the resultant error is reasonable and 
satisfactory. Note the point of fault location is measured from 
G3. 

As mentioned before, the time needed to find the fault 
location of occurrence is about 4.2 ms, i.e. 42 samples per 10 
kHz sampling rate. Therefore, the method presented in this 
paper will be a proper technique to estimate the fault location 
on transmission systems. 

TABLE I. 
THE RESULTS OF FAULT LOCATION 

Point of fault 

location 

Location estimated by 

BPNN 

Error 

Value 

Error 

% 

24 23.8086 -0.1914 -0.96 

34 34.0467 0.0467 0.23 

49 49.0903 0.0903 0.45 

57 57.1833 0.1833 0.92 

11 11.1034 0.1034 0.52 

66 65.7872 -0.2128 -1.06 

74 74.0679 0.0679 0.34 

86 86.1994 0.1994 1.00 

95 94.8874 -0.1126 -0.56 

103 103.2897 0.2897 1.45 

112 111.7134 -0.2866 -1.43 

 

VI. CONCLUSION 

WT based multi-resolution analysis approach can be 
successfully applied for effective detection, classification and 
location of faults in transmission lines. Fault detection and 
classification can be accomplished using detail coefficients of 
first decomposition level of the current signal of each 
generator. Fault location can be estimated within 4.2 ms from 
the detail coefficients of five decomposition levels of current 
signals using BPNNs. Due to the obtained results, the 
proposed technique can be used as a fast, acceptable and 
successful tool for detection of the various types of the faults 
occurred on transmission lines, at different locations. 
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